| 2 | <b>DÀC</b> <u>V1.0</u>                                                                                                                   | DAG                                                                                                                  | Re                                                                                                | port No.: DACE240718006RL005                                       |
|---|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|   | DAG                                                                                                                                      | RF TEST                                                                                                              | REPORT                                                                                            |                                                                    |
|   | HUIZHOU FORY                                                                                                                             |                                                                                                                      | CTRONICS TECHN<br>D.                                                                              | NOLOGY CO.,                                                        |
|   | Product Name                                                                                                                             | Photovoltaic (<br>mac                                                                                                | energy storage D0<br>hine                                                                         | C integrated                                                       |
| C |                                                                                                                                          | Test Model                                                                                                           | (s).: DA802                                                                                       |                                                                    |
|   | 2                                                                                                                                        |                                                                                                                      | DAG                                                                                               |                                                                    |
|   | Report Reference No.                                                                                                                     | : DACE240718006F                                                                                                     | <b>{L005</b>                                                                                      |                                                                    |
| 0 |                                                                                                                                          |                                                                                                                      |                                                                                                   |                                                                    |
| V | Applicant's Name                                                                                                                         | : HUIZHOU FORYC                                                                                                      | OU OPTOELECTRONICS TEC                                                                            | CHNOLOGY CO., LTD.                                                 |
|   | Address                                                                                                                                  | Building No.6, For<br>Road,Dongjiang H                                                                               | you Industrial Park Area B,No<br>igh-tech Industry Park, Huizho                                   | .1 North Shangxia<br>u, Guangdong,China.                           |
|   | Testing Laboratory<br>Address                                                                                                            | <ul> <li>Shenzhen DACE T</li> <li>102, Building H1, &amp;</li> <li>Tangtou Connunity<br/>Guangdong, China</li> </ul> | esting Technology Co., Ltd.<br>4 1/F., Building H, Hongfa Scie<br>5 Shiyan Subdistrict, Bao'an D  | nce & Technology Park,<br>istrict, Shenzhen,                       |
|   | Test Specification Standard                                                                                                              | : ETSI EN 300 440 V                                                                                                  | V2.2.1 (2018-07)                                                                                  |                                                                    |
|   | Date of Receipt                                                                                                                          | : July 18, 2024                                                                                                      |                                                                                                   |                                                                    |
| C | Date of Test                                                                                                                             | : July 18, 2024 to Ju                                                                                                | lv 29. 2024                                                                                       |                                                                    |
|   | Data of Issue                                                                                                                            | : July 29, 2024                                                                                                      | .6                                                                                                |                                                                    |
|   | Result                                                                                                                                   | · Pass                                                                                                               |                                                                                                   |                                                                    |
| 1 | Note: This report shall not be r<br>Testing Technology Co., Ltd. T<br>Co., Ltd. personnel only, and s<br>report only apply to the tested | eproduced except in full,<br>his document may be alte<br>hall be noted in the revisi<br>sample                       | without the written approval of<br>ered or revised by Shenzhen E<br>on section of the document. T | Shenzhen DACE<br>DACE Testing Technology<br>he test results in the |
|   |                                                                                                                                          |                                                                                                                      |                                                                                                   |                                                                    |
|   | 102, Building H1, & 1/F., Building H, Hongfa So<br>Web: http://www.dace-lab.com                                                          | ience & Technology Park, Tangtou Cor<br>Tel: +86-755-23010613                                                        | nunity, Shiyan Subdistrict, Bao'an District, She<br>E-mail: service@dace-lab.com                  | enzhen, Guangdong, China<br>Page 1 of 71                           |

Ì

ì

oved by:

r chen

en / Manager

## **Revision History Of Report**

| Description | REPORT No.                 | Issue Date                                                       |  |  |
|-------------|----------------------------|------------------------------------------------------------------|--|--|
| Original    | DACE240718006RL005         | July 29, 2024                                                    |  |  |
|             |                            |                                                                  |  |  |
| - xe        | Co.                        |                                                                  |  |  |
| DE          | ale                        | P                                                                |  |  |
|             | UL I                       | 2/0                                                              |  |  |
|             | Description       Original | Description     REPORT No.       Original     DACE240718006RL005 |  |  |

#### NOTE1:

DΔC

NG

The CE mark as shown below can be used, under the responsibility of the manufacturer, after completion of an EC Declaration of Conformity and compliance with all relevant EU Directives.

#### NOTE2:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Compiled by:

Supervised by: Sofone of

Ben Tang

Ben Tang / Test Engineer

Stone Yin / Project Engineer

 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Page 2 of 71

)DE

# CONTENTS

| DVC -                                                                         | V1.0                                                                                                                                                          | Report No.: DACE240718006RL005            |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 240                                                                           | CONTEN                                                                                                                                                        | ITS                                       |
| 1 TEST SUMMA                                                                  | RY                                                                                                                                                            | 4                                         |
| 1 1 TEST S                                                                    | STANDARDS                                                                                                                                                     | 4                                         |
| 1.2 SUMMA                                                                     | ARY OF TEST RESULT                                                                                                                                            | 4                                         |
| 2 GENERAL INF                                                                 | ORMATION                                                                                                                                                      | 5                                         |
| 2.1 CLIENT<br>2.2 DESCR<br>2.3 DESCR<br>2.4 DESCR<br>2.5 EQUIPM<br>2.6 STATEM | INFORMATION<br>IPTION OF DEVICE (EUT)<br>IPTION OF TEST MODES<br>IPTION OF SUPPORT UNITS<br>MENTS USED DURING THE TEST<br>MENT OF THE MEASUREMENT UNCERTAINTY | 5<br>5<br>5<br>5<br>5<br>6<br>6<br>6<br>6 |
| 3 RADIO SPECT                                                                 | RUM MATTER TEST RESULTS (RF)                                                                                                                                  | 7                                         |
| 3.1 EQUIVA                                                                    | ALENT ISOTROPICALLY RADIATED POWER (E.I.R.I                                                                                                                   | P.)                                       |
| 3.1.7                                                                         | 1 E.U.T. Operation:                                                                                                                                           |                                           |
| 3.1.2                                                                         | 2 Test Setup Diagram:                                                                                                                                         |                                           |
| 3.1.3                                                                         | 3 Test Data:                                                                                                                                                  |                                           |
| 3.2 PERMIT                                                                    | ITED RANGE OF OPERATING FREQUENCIES                                                                                                                           | 9                                         |
| 3.2.                                                                          | 1 E.U.T. Operation:                                                                                                                                           |                                           |
| 3.2.2                                                                         | 2 Test Setup Diagram:                                                                                                                                         | g                                         |
| 3.2.3                                                                         | 3 Test Data:                                                                                                                                                  | 9                                         |
| 3.3 BLOCK                                                                     |                                                                                                                                                               |                                           |
| 3.3.7                                                                         | 1 E.U.I. Operation:                                                                                                                                           |                                           |
| 3.3.4                                                                         | 2 Test Setup Diagram:                                                                                                                                         |                                           |
| 3 4 UNIWAN                                                                    |                                                                                                                                                               |                                           |
| 3.4 UNWAN                                                                     | 1 EULT Operation:                                                                                                                                             | 12 10 1GHz)                               |
| 3.4.                                                                          | 2 Test Setun Diagram:                                                                                                                                         |                                           |
| 3.4.3                                                                         | 3 Test Data:                                                                                                                                                  | 14                                        |
| 3.5 UNWAN                                                                     | TED EMISSIONS IN THE SPURIOUS DOMAIN (ABO                                                                                                                     | 0VF 1GHz) 15                              |
| 3.5.1                                                                         | 1 E.U.T. Operation:                                                                                                                                           | 16                                        |
| 3.5.2                                                                         | 2 Test Setup Diagram:                                                                                                                                         |                                           |
| 3.5.3                                                                         | 3 Test Data:                                                                                                                                                  |                                           |
| 3.6 RECEIV                                                                    | /ER SPURIOUS RADIATIONS (25MHz TO 1GHz)                                                                                                                       |                                           |
| 3.6.1                                                                         | 1 E.U.T. Operation:                                                                                                                                           |                                           |
| 3.6.2                                                                         | 2 Test Data:                                                                                                                                                  |                                           |
| 3.7 RECEIV                                                                    | VER SPURIOUS RADIATIONS (ABOVE 1GHZ)                                                                                                                          |                                           |
| 3.7.1                                                                         | 1 E.U.T. Operation:                                                                                                                                           |                                           |
| 3.7.2                                                                         | 2 Test Data:                                                                                                                                                  |                                           |
| 4 PHOTOS OF T                                                                 | THE EUT                                                                                                                                                       |                                           |
| 160B EM                                                                       | MISSION BANDWIDTH                                                                                                                                             |                                           |
| 2. RF OUT                                                                     | PUT POWER                                                                                                                                                     |                                           |
| 3. PERMIT                                                                     | TED RANGE OF OPERATING FREQUENCIES                                                                                                                            |                                           |
| 4. SPURIOL<br>5. RECEIVE                                                      | DS EMISSIONS                                                                                                                                                  | 00                                        |
|                                                                               |                                                                                                                                                               |                                           |

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 3 of 71

Ne

#### **TEST SUMMARY** 1

### 1.1 Test Standards

DΔC

)DE

The tests were performed according to following standards:

ETSI EN 300 440 V2.2.1 (2018-07): Short Range Devices (SRD); Radio equipment to be used in the 1 GHz to 40 GHz frequency range; Harmonised Standard for access to radio spectrum

#### 1.2 Summary of Test Result

| Item                                                      | Standard                            | Method                                 | Requirement    | Result |
|-----------------------------------------------------------|-------------------------------------|----------------------------------------|----------------|--------|
| Equivalent isotropically radiated power (e.i.r.p.)        | ETSI EN 300 440<br>V2.2.1 (2018-07) | Clause 4.2.2.3.1.2                     | Clause 4.2.2.1 | Pass   |
| Permitted range of operating frequencies                  | ETSI EN 300 440<br>V2.2.1 (2018-07) | Clause 4.2.3.3                         | Clause 4.2.3.1 | Pass   |
| Duty cycle                                                | ETSI EN 300 440<br>V2.2.1 (2018-07) | Clause 4.2.53                          | Clause 4.2.5.1 | Pass   |
| Adjacent channel selectivity                              | ETSI EN 300 440<br>V2.2.1 (2018-07) | Clause 4.3.3.3                         | Clause 4.3.3.1 | Pass   |
| Blocking or desensitization                               | ETSI EN 300 440<br>V2.2.1 (2018-07) | Clause 4.3.4.3                         | Clause 4.3.4.1 | Pass   |
| Unwanted emissions in the spurious domain (25MHz to 1GHz) | ETSI EN 300 440<br>V2.2.1 (2018-07) | Clause 4.2.4.3.1 &<br>Clause 4.2.4.3.2 | Clause 4.2.4.1 | Pass   |
| Unwanted emissions in the spurious domain (above 1GHz)    | ETSI EN 300 440<br>V2.2.1 (2018-07) | Clause 4.2.4.3.1 &<br>Clause 4.2.4.3.2 | Clause 4.2.4.1 | Pass   |
| Receiver spurious radiations (25MHz to 1GHz)              | ETSI EN 300 440<br>V2.2.1 (2018-07) | Clause 4.3.5.3.1 &<br>Clause 4.3.5.3.2 | Clause 4.3.5.1 | Pass   |
| Receiver spurious radiations (above 1GHz)                 | ETSI EN 300 440<br>V2.2.1 (2018-07) | Clause 4.3.5.3.1 &<br>Clause 4.3.5.3.2 | Clause 4.3.5.1 | Pass   |
|                                                           |                                     |                                        |                |        |

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

NE

NE

,AC

26

6

|     | V1.0               |                                                                          | Report No.: DACE240718006RL005                                   |
|-----|--------------------|--------------------------------------------------------------------------|------------------------------------------------------------------|
|     |                    |                                                                          |                                                                  |
|     |                    |                                                                          |                                                                  |
| 2   | GENERAL IN         | FORMATION 🚬 🌈                                                            |                                                                  |
| 2.1 | Client Information | DAC                                                                      |                                                                  |
|     | Applicant's Name   | : HUIZHOU FORYOU OPTOELECT                                               | RONICS TECHNOLOGY CO., LTD.                                      |
|     | Address            | : Building No.6, Foryou Industrial Pa Road, Dongjiang High-tech Industry | rk Area B,No.1 North Shangxia<br>Park, Huizhou, Guangdong,China. |
|     | Manufacturer       | : HUIZHOU FORYOU OPTOELECT                                               | RONICS TECHNOLOGY CO., LTD.                                      |
|     | Address            | : Building No.6, Foryou Industrial Pa Road, Dongjiang High-tech Industry | rk Area B,No.1 North Shangxia<br>Park, Huizhou, Guangdong,China. |
|     |                    |                                                                          |                                                                  |
| 2.2 | Description of Dev | vice (EUT)                                                               |                                                                  |
|     | Product Name:      | Photovoltaic energy storage DC integr                                    | ated machine                                                     |
|     |                    |                                                                          |                                                                  |

| Model/Type reference: | DA802              |
|-----------------------|--------------------|
| Series Model:         | N/A                |
| Trade Mark:           | ADAYO              |
| Power Supply:         | DC60V14*2A         |
| Operation Frequency:  | 2402 MHz ~ 2480MHz |
| Number of Channels:   | 16                 |
| Modulation Type:      | GFSK               |
| Antenna Type:         | Internal           |
| Antenna Gain:         | 0dBi               |
| Hardware Version:     | V1.0               |
| Software Version:     | V1.0               |

### 2.3 Description of Test Modes

| No                           | Title                  | Description                                                        |  |  |
|------------------------------|------------------------|--------------------------------------------------------------------|--|--|
| TM1                          | 802.11a mode           | Keep the EUT in continuously transmitting at 802.11a mode.         |  |  |
| TM2                          | 802.11n(HT20) mode     | Keep the EUT in continuously transmitting at 802.11n(HT20) mode.   |  |  |
| ТМ3                          | 802.11n(HT40) mode     | Keep the EUT in continuously transmitting at 802.11n(HT40) mode.   |  |  |
| TM4                          | 802.11ac(VHT20) mode   | Keep the EUT in continuously transmitting at 802.11ac(VHT20) mode. |  |  |
| TM5                          | 802.11ac(VHT40) mode   | Keep the EUT in continuously transmitting at 802.11ac(VHT40) mode. |  |  |
| TM6                          | 802.11ac(VHT80) mode   | Keep the EUT in continuously transmitting at 802.11ac(VHT80) mode. |  |  |
| TM7                          | Receiving mode (20MHz) | Keep the EUT in receiving mode with 20MHz bandwidth.               |  |  |
| TM8                          | Receiving mode (40MHz) | Keep the EUT in receiving mode with 40MHz bandwidth.               |  |  |
| TM9                          | Receiving mode (80MHz) | Keep the EUT in receiving mode with 80MHz bandwidth.               |  |  |
| TM10                         | Normal mode            | Keep the EUT in normal communication with pairing device mode.     |  |  |
|                              |                        |                                                                    |  |  |
| Description of Support Units |                        |                                                                    |  |  |

#### **Description of Support Units** 2.4

The EUT was tested as an independent device.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Page 5 of 71 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

xC

)AC

### 2.5 Equipments Used During The Test

Equivalent isotropically radiated power (e.i.r.p.) Permitted range of operating frequencies Duty cycle

#### Adjacent channel selectivity

Blocking or desensitization

DΔC

NE

| Equipment                                 | Manufacturer                                               | Model No                | Inventory No | Cal Date   | Cal Due Date |
|-------------------------------------------|------------------------------------------------------------|-------------------------|--------------|------------|--------------|
| RF Test Software                          | TACHOY                                                     | RTS-01                  | V2.0.0.0     | /          |              |
| High Pass filter                          | ZHINAN                                                     | OQHPF1-M1.5-<br>18G-224 | 6210075      | 1          | DA           |
| Power divider                             | MIDEWEST                                                   | PWD-2533                | SMA-79       | 2023-05-11 | 2026-05-10   |
| RF Sensor Unit                            | Tachoy<br>Information<br>Technology(she<br>nzhen) Co.,Ltd. | TR1029-2                | 000001       | /          | 1            |
| Wideband radio<br>communication<br>tester | R&S                                                        | CMW500                  | 113410       | 2024-06-12 | 2025-06-11   |
| Vector signal generator                   | Keysight                                                   | N5181A                  | MY48180415   | 2023-11-09 | 2024-11-08   |
| Signal generator                          | Keysight                                                   | N5182A                  | MY50143455   | 2023-11-09 | 2024-11-08   |
| Spectrum Analyzer                         | Keysight                                                   | N9020A                  | MY53420323   | 2023-12-12 | 2024-12-11   |

#### 2.6 Statement Of The Measurement Uncertainty

| Test Item                                                        | Measurement Uncertainty            |
|------------------------------------------------------------------|------------------------------------|
| RF conducted power                                               | ±0.733dB                           |
| Radio Frequency                                                  | ±2×10 <sup>-7</sup>                |
| Duty cycle                                                       | ±3.1%                              |
| Radiated Emission (Below 1GHz)                                   | ±5.79dB                            |
| Radiated Emission (Above 1GHz)                                   | ±5.46dB                            |
| Note: (1) This uncertainty represents an expanded uncertainty of | expressed at approximately the 95% |

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately th confidence level using a coverage factor of k=2.

C

DΔG

Report No.: DACE240718006RL005

-

#### Radio Spectrum Matter Test Results (RF) 3

### 3.1 Equivalent isotropically radiated power (e.i.r.p.)

| •                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Requirement: | Clause 4.2.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Test Limit:       | 25 mW e.i.r.p.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Test Method:      | Clause 4.2.2.3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Procedure:        | The test procedure shall be as follows:<br><b>Step 1:</b><br>• using a suitable means, the output of the transmitter shall be coupled to a<br>matched diode detector;<br>• the output of the diode detector shall be connected to the vertical channel of an<br>oscilloscope;<br>• the combination of the diode detector and the oscilloscope shall be capable of<br>faithfully reproducing the envelope peaks and the duty cycle of the transmitter<br>output signal;<br>• the observed duty cycle of the transmitter (Tx on/(Tx on + Tx off)) shall be noted<br>as x, (0 < x < 1) and recorded.                                                                                                                                                                                                                                                                                                                                                                                  |
| de<br>Dde         | <ul> <li>Step 2:</li> <li>the average output power of the transmitter shall be determined using a wideband, calibrated RF power meter with a matched thermocouple detector or an equivalent thereof and, where applicable, with an integration period that exceeds the repetition period of the transmitter by a factor 5 or more. The observed value shall be recorded as "A" (in dBm);</li> <li>the e.i.r.p. shall be calculated from the above measured power output A, the observed duty cycle x, and the applicable antenna assembly gain "G" in dBi, according to the formula:</li> <li>P = A + G + 10 log (1/x);</li> <li>P shall not exceed the value specified in clause 4.2.2.4.</li> <li>The measurement shall be repeated at the lowest, the middle, and the highest frequency of the stated frequency range. These frequencies shall be recorded.</li> <li>FHSS equipment shall be made to hop continuously to each of these three frequencies separately.</li> </ul> |

#### 3.1.1 E.U.T. Operation:

)DE

| Operating Environment: |  |      |             |          |   |                       |         |    |
|------------------------|--|------|-------------|----------|---|-----------------------|---------|----|
| Temperature: 22.2 °C   |  | 6    | Humidity:   | 53.1 %   |   | Atmospheric Pressure: | 102 kPa |    |
| Pretest mode:          |  | TM1, | TM2, TM3, 1 | FM4, TM5 | - |                       |         |    |
| Final test mode:       |  | TM1, | TM2, TM3, 1 | FM4, TM5 |   |                       |         | 22 |

DAG

,AC

)De

Ŷ

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

NC

| DAC —                                            | V1.0              | Report No.: DACE240718006RL005 |
|--------------------------------------------------|-------------------|--------------------------------|
| 3.1.2 Test Setup Dia                             | gram:             | DAG                            |
| E                                                |                   | TST PASS                       |
| <b>3.1.3 Test Data:</b><br>Please Refer to Apper | Idix for Details. | DAE                            |
|                                                  |                   |                                |
|                                                  |                   |                                |
|                                                  |                   |                                |
|                                                  |                   |                                |
|                                                  |                   |                                |

V1.0

DΔC

#### Report No.: DACE240718006RL005

### 3.2 Permitted range of operating frequencies

| Test Requirement:       | Clause 4.2.3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Limit:             | The width of the power spectrum envelope is fH -fL for a given operating frequency.<br>In equipment that allows adjustment or selection of different operating frequencies,<br>the power envelope takes up different positions in the allowed band. The frequency<br>range is determined by the lowest value of fL and the highest value of fH resulting<br>from the adjustment of the equipment to the lowest and highest operating<br>frequencies.<br>The occupied bandwidth (i.e. the bandwidth in which 99 % of the wanted emission<br>is contained) of the transmitter shall fall within the assigned frequency band.<br>For all equipment the frequency range shall lie within the frequency band given by<br>clause 4.2.2.4, table 2. For non- harmonized frequency bands the available<br>frequency range may differ between national administrations. |
| Test Method:            | Clause 4.2.3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Procedure:              | The measurement procedure shall be as follows:<br>a) put the spectrum analyser in video averaging mode with a minimum of 50<br>sweeps selected;<br>b) coloct the lowest energing frequency of the equipment under test and estivate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| de<br>Je                | the transmitter with modulation applied. The RF emission of the equipment shall be<br>displayed on the spectrum analyser;<br>c) using the marker of the spectrum analyser, find the lowest frequency below the<br>operating frequency at which the spectral power density drops below the level given<br>in clause 4.2.3.2. This frequency shall be recorded in the test report;<br>d) select the highest operating frequency of the equipment under test and find the<br>highest frequency at which the spectral power density drops below the value given<br>in clause 4.2.3.2. This frequency shall be recorded in the test report;<br>the difference between the frequencies measured in steps c) and d) is the operating<br>frequency range. It shall be recorded in the test report.                                                                     |
| 3.2.1 E.U.T. Operation: | IE E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

#### 3.2.1 E.U.T. Operation:

| Operating Environment: |         |             |           |        |                       |         |  |
|------------------------|---------|-------------|-----------|--------|-----------------------|---------|--|
| Temperature:           | 22.2 °C |             | Humidity: | 53.1 % | Atmospheric Pressure: | 102 kPa |  |
| Pretest mode:          | TM1,    | TM2, TM3, 1 | FM4, TM5  |        |                       |         |  |
| Final test mode:       | TM1,    | TM2, TM3, 1 | FM4, TM5  |        |                       |         |  |
|                        |         | 1. 199      |           |        |                       |         |  |

#### 3.2.2 Test Setup Diagram:



102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Page 9 of 71 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

V1.0

Report No.: DACE240718006RL005

#### 3.3 Blocking or desensitization

DΔC

| Test Requirement:                  | Clause 4.3.4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Limit:                        | The blocking level, for an<br>than the values given in t<br>are found.<br>Table 6: Limits for blockin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | y frequency within the specified ranges, shall not be less<br>able 6, except at frequencies on which spurious responses<br>ng or desensitization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                    | Receiver category                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Limit S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| J-                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -30 dBm + K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -45 dBm + k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -60 dBm + k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                    | The correction factor, k, i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s as follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                    | k=-20 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $*  log_{10}^f - 10 * log_{10}^{BW}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AE                                 | Where:<br>- fis the frequency in GH2<br>- <i>BW</i> is the occupied band<br>The factor <i>k</i> is limited with<br>40 dB < k < 0 dB.<br>The measured blocking b                                                                                                                                                                                                                                                                                                                                                                                                                                                         | z;<br>dwidth in MHz.<br>in the following:<br>evel shall be stated in the test report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Test Method:                       | Clause 4.3.4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Procedure:                         | This measurement shall<br>Two signal generators A a<br>network to the receiver, e<br>a) via a test fixture or a te<br>antenna; or<br>b) directly to the receiver<br>The method of coupling t<br>Signal generator A shall b<br>modulation of the wanted<br>be adjusted to a test freq<br>the occupied bandwidth a<br>Initially signal generator B<br>level which still gives suff<br>generator A shall then be<br>Signal generator B is the<br>met. This level shall be re<br>The measurement shall b<br>at 10 times, 20 times and<br>edge of the occupied bar<br>The blocking or desensiti<br>of the unwanted signal (g | be conducted under normal conditions.<br>and B shall be connected to the receiver via a combining<br>either:<br>est antenna to the receiver integrated, dedicated or test<br>permanent or temporary antenna connector.<br>o the receiver shall be stated in the test report.<br>be at the nominal frequency of the receiver, with normal<br>I signal. Signal generator B shall be unmodulated and shall<br>uency at approximately 10 times, 20 times and 50 times of<br>above upper band edge of occupied bandwidth.<br>B shall be switched off and using signal generator A the<br>ficient response shall be established. The output level of<br>increased by 3 dB.<br>n switched on and adjusted until the wanted criteria are<br>ecorded.<br>be repeated with the test frequency for signal generator B<br>I 50 times of the occupied bandwidth below the lower band<br>ndwidth.<br>zation shall be recorded as the level in dBm of lowest level<br>generator B). |
| DAE                                | For tagging systems (e.g<br>similar systems) signal go<br>70 % of the measured sy<br>desensitization shall be r<br>signal (generator B) resu<br>the receiver +3 dB.                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . RF identification, anti-theft, access control, location and<br>enerator A may be replaced by a physical tag positioned at<br>stem range in metres. In this case, the blocking or<br>ecorded as the ratio in dB of lowest level of the unwanted<br>lting in a non-read of the tag. to the declared sensitivity of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3.3.1 E.U.T. Operation             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Operating Environment:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 102 Puilding H1 & 1/E Puilding H I | Honofa Science & Technology Park, Tanoto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | u Connunity Shivan Subdictrict Bao'an District Shenzhen, Guangdong, China                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

|   |                                                     |                |        | 20                   |                             |
|---|-----------------------------------------------------|----------------|--------|----------------------|-----------------------------|
|   | <b>DAC</b>                                          | /1.0           |        | Rep                  | ort No.: DACE240718006RL005 |
|   |                                                     |                |        |                      |                             |
| [ | Temperature: 22.2 °C                                | Humidity.      | 53 1 % | Atmospheric Pressure | 102 kPa                     |
| ł | Pretest mode:                                       | TM8            |        |                      |                             |
| ł | Final test mode:                                    | TM8            | 26     |                      | 20                          |
| L | 3.3.2 Test Setup Diagram                            | n:             |        |                      |                             |
| E |                                                     | RF TEST SYSTEM | EUT    |                      | DAC                         |
| L | <b>3.3.3 Test Data:</b><br>Please Refer to Appendix | for Details.   | DAE    |                      | DÀC                         |
|   |                                                     |                |        |                      |                             |
|   |                                                     |                |        |                      |                             |
|   |                                                     | 0              |        |                      |                             |
|   |                                                     |                |        |                      |                             |

DΔC

Report No.: DACE240718006RL005

### 3.4 Unwanted emissions in the spurious domain (25MHz to 1GHz)

| equenci<br>000<br>Iz                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| w                                                                                                                                                                                                                          |
| nW                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                            |
| a test load,<br>overload of<br>be adjusted<br>spurious<br>I be recorded<br>nic of the<br>d on the<br>0 dB.<br>harmonic of<br>p band<br>shall be<br>nerate or that<br>n limit of its<br>shall be<br>corded in the<br>of the |
| 2 to 10 times<br>bove 20 GHz<br>ce the carrier<br>urious<br>bied by the<br>shall not be<br>level at the<br>mined by<br>roduce the<br>bsolute<br>he bandwidth<br>teps c) to e)<br>er in the<br>he specified<br>shall be     |
| receiver. The                                                                                                                                                                                                              |
|                                                                                                                                                                                                                            |

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

bandwidth of the measuring receiver shall be adjusted until the sensitivity of the measuring receiver, after allowing for the coupling loss, is at least 6 dB below the spurious emission limit given in table 3, see clause 4.2.4.4. This bandwidth shall be recorded in the test report.

The transmitter under test shall be placed on the support in its standard position, connected to an artificial antenna (see clause 5.8.2) and switched on without modulation. If modulation cannot be inhibited then the test shall be carried out with modulation, (see clause 5.8.1), and this fact shall be recorded in the test report. b) For carrier frequencies in the range 1 GHz to 20 GHz the frequency of the measuring receiver shall be adjusted over the frequency range 25 MHz to 10 times the carrier frequency, not exceeding 40 GHz. For carrier frequencies above 20 GHz the measuring receiver shall be tuned over the range 25 MHz up to twice the carrier frequency, not exceeding 66 GHz, except for the channel on which the transmitter is intended to operate and for channelized systems, its adjacent channels. The frequency of each spurious emission detected shall be noted. If the test site is disturbed by interference coming from outside the site, this qualitative search may be performed in a screened room, with a reduced distance between the transmitter and the test antenna.

c) At each frequency at which an emission has been detected, the measuring receiver shall be tuned and the test antenna shall be raised or lowered through the specified height range until the maximum signal level is detected on the measuring receiver.

d) The transmitter shall be rotated through 360° about a vertical axis, to maximize the received signal.

e) The test antenna shall be raised or lowered again through the specified height range until a maximum is obtained. This level shall be noted.

f) The substitution antenna (see clause E.3.2) shall replace the transmitter antenna in the same position and in vertical polarization. It shall be connected to the signal generator.

g) At each frequency at which an emission has been detected, the signal generator, substitution antenna, and measuring receiver shall be tuned. The test antenna shall be raised or lowered through the specified height range until the maximum signal level is detected on the measuring receiver. The level of the signal generator giving the same signal level on the measuring receiver as in item e) shall be noted. After corrections due to the gain of the substitution antenna and the cable loss between the signal generator and the substitution antenna, is the radiated spurious emission at this frequency.

h) The frequency and level of each spurious emission measured and the bandwidth of the measuring receiver shall be recorded in the test report.

i) Steps c) to h) shall be repeated with the test antenna oriented in horizontal polarization.

j) If a user accessible power adjustment is provided then the tests in steps c) to h) shall be repeated at the lowest power setting available.

Steps c) to i) shall be repeated with the transmitter in the standby condition if this option is available.

Additional requirements for equipment employing FHSS modulation Measurements shall be carried out while the equipment is hopping between two frequencies separated by the maximum hop frequency change declared by the manufacturer, one of which is the lowest hop frequency.

The measurements shall be repeated on two frequencies separated by the maximum hop frequency change declared by the manufacturer, one of which is the highest hop frequency.

#### 3.4.1 E.U.T. Operation:

| Operating Environment:                                                                                                                                     |         |           |        |                       |         |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|--------|-----------------------|---------|--|--|
| Temperature:                                                                                                                                               | 22.2 °C | Humidity: | 53.1 % | Atmospheric Pressure: | 102 kPa |  |  |
|                                                                                                                                                            |         |           |        |                       |         |  |  |
| 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China |         |           |        |                       |         |  |  |
| Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 13 of 71                                                              |         |           |        |                       |         |  |  |

|        | D                                                     | AC.                                                             | . C                                               |
|--------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------|
|        |                                                       | 1.0                                                             | Report No.: DACE240718006RL005                    |
|        |                                                       |                                                                 |                                                   |
| Γ      | Pretest mode:                                         | TM1, TM2, TM3, TM4, TM5 🥏                                       |                                                   |
|        | Final test mode:                                      | TM1, TM2, TM3, TM4, TM5                                         | NE                                                |
| г      | 3.4.2 Test Setup Diagram                              | 1:                                                              | DP                                                |
| C<br>D |                                                       | EUT                                                             |                                                   |
|        | <b>3.4.3 Test Data:</b><br>Please Refer to Appendix t | or Details.                                                     |                                                   |
|        |                                                       |                                                                 |                                                   |
|        |                                                       |                                                                 |                                                   |
|        |                                                       |                                                                 | DAC                                               |
|        |                                                       |                                                                 |                                                   |
|        |                                                       |                                                                 |                                                   |
|        | 102, Building H1, & 1/F., Building H, Hon             | fa Science & Technology Park, Tangtou Connunity, Shiyan Subdist | rict, Bao'an District, Shenzhen, Guangdong, China |

DΔC

Report No.: DACE240718006RL005

### 3.5 Unwanted emissions in the spurious domain (above 1GHz)

| _ |                   |                             |                                                            |                            |                      |  |  |
|---|-------------------|-----------------------------|------------------------------------------------------------|----------------------------|----------------------|--|--|
|   | Test Requirement: | Clause 4.2.4.1              | 200                                                        |                            | N. C.                |  |  |
|   | Test Limit:       | Table 3: Spurious emissions |                                                            |                            |                      |  |  |
|   |                   |                             |                                                            |                            |                      |  |  |
|   |                   |                             |                                                            |                            |                      |  |  |
|   | . (*              | Frequency                   | 47 MHz to 74 MHz<br>87 5 MHz to 108 MHz                    | Other frequencies          | Frequenci            |  |  |
|   |                   | Chate                       | 174 MHz to 230 MHz                                         |                            | > 1 000              |  |  |
|   | VE                | State                       | 470 MHz to 862 MHz                                         |                            | MHz                  |  |  |
|   |                   | Operating                   | 4 nW                                                       | 250 nW                     | 1 uW                 |  |  |
|   |                   | Standby                     | 2 nW                                                       | 2 nW                       | 20 nW                |  |  |
|   | Test Method:      | Clause 4.2.4.3.1            | & Clause 4.2.4.3.2                                         |                            |                      |  |  |
|   | Procedure:        | Conducted spu               | rious emission:                                            |                            |                      |  |  |
|   | 1                 | a) The transmitte           | er shall be connected to a                                 | measuring receiver thro    | bugh a test load,    |  |  |
|   |                   | the measuring re            | nuator, and it necessary, a<br>preiver. The handwidth of t | the measuring receiver     | shall be adjusted    |  |  |
|   |                   | until the sensitivi         | ty of the measuring receiv                                 | er is at least 6 dB below  | w the spurious       |  |  |
|   |                   | emission limit giv          | ven in table 3, see clause 4                               | 4.2.4.4. This bandwidth    | shall be recorded    |  |  |
|   | . (2)             | in the test report          | · 🔺                                                        |                            |                      |  |  |
|   |                   | For the measure             | ement of spurious emission                                 | ns below the second ha     | armonic of the       |  |  |
|   |                   | transmitter carrie          | r, the litter used shall be a                              | ates this signal by at lea | ast 30 dB            |  |  |
|   |                   | For the measure             | ement of spurious emission                                 | ns at and above the se     | cond harmonic of     |  |  |
|   |                   | the carrier freque          | ency the filter used shall be                              | e a high pass filter with  | a stop band          |  |  |
|   |                   | rejection exceed            | ing 40 dB. The cut-off freq                                | uency of the high pass     | filter shall be      |  |  |
|   | S.C.              | approximately 1,            | 5 times the transmitter car                                | rrier frequency.           | t concrete or that   |  |  |
|   | 20                | the high pass filt          | er does not attenuate the                                  | harmonics of the carrie    |                      |  |  |
|   | V                 | b) The transmitte           | er shall be unmodulated ar                                 | nd operating at the max    | imum limit of its    |  |  |
|   |                   | specified power             | range. If modulation canno                                 | ot be inhibited then the   | test shall be        |  |  |
|   |                   | carried out with r          | modulation (see clause 5.8                                 | 3.1) and this fact shall b | e recorded in the    |  |  |
|   |                   | test report.                | quencies in the range 1 GI                                 | Hz to 20 GHz the frequ     | ency of the          |  |  |
|   |                   | measuring receiv            | ver shall be adjusted over                                 | the frequency range 25     | 6 MHz to 10 times    |  |  |
|   | N 100             | the carrier freque          | ency, not exceeding 40 GF                                  | Iz. For carrier frequenc   | ies above 20 GHz     |  |  |
|   |                   | the measuring re            | eceiver shall be tuned over                                | the range 25 MHz up t      | to twice the carrier |  |  |
|   | V                 | frequency, not ex           | ceeding 66 GHz. The free                                   | quency and level of eve    | ry spurious          |  |  |
|   |                   | transmitter carrie          | and for channelized sys                                    | tems its adjacent chan     | nels shall not be    |  |  |
|   |                   | recorded.                   | and, for onarmonized by                                    |                            |                      |  |  |
|   |                   | d) If the measuri           | ng receiver has not been o                                 | calibrated in terms of po  | ower level at the    |  |  |
|   |                   | transmitter outpu           | it, the level of any detected                              | d components shall be      | determined by        |  |  |
|   |                   | frequency and lo            | nsmitter by the signal gene                                | erator and adjusting it to | b reproduce the      |  |  |
|   |                   | power level of ea           | ach of the emissions shall                                 | be noted                   |                      |  |  |
|   |                   | e) The frequency            | and level of each spuriou                                  | is emission measured a     | and the bandwidth    |  |  |
|   |                   | of the measuring            | receiver shall be recorded                                 | d in the test report.      |                      |  |  |
|   | C                 | f) If a user acces          | sible power adjustment is                                  | provided then the tests    | in steps c) to e)    |  |  |
|   | NC I              | The measureme               | at the lowest power settle                                 | ng available.              | mitter in the        |  |  |
| 1 |                   | standby conditio            | n if this option is available.                             |                            |                      |  |  |
|   |                   |                             |                                                            | 20                         |                      |  |  |
|   |                   | cabinet spuriou             | s radiation:                                               | V                          |                      |  |  |
|   |                   | a) A test site sele         | ected from Annex E which                                   | tultils the requirements   | of the specified     |  |  |
|   |                   | oriented initially          | or this measurement shall                                  | i be used. The test ante   |                      |  |  |
| L | . 6               | onented initially           |                                                            |                            |                      |  |  |

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

bandwidth of the measuring receiver shall be adjusted until the sensitivity of the measuring receiver, after allowing for the coupling loss, is at least 6 dB below the spurious emission limit given in table 3, see clause 4.2.4.4. This bandwidth shall be recorded in the test report.

The transmitter under test shall be placed on the support in its standard position, connected to an artificial antenna (see clause 5.8.2) and switched on without modulation. If modulation cannot be inhibited then the test shall be carried out with modulation, (see clause 5.8.1), and this fact shall be recorded in the test report. b) For carrier frequencies in the range 1 GHz to 20 GHz the frequency of the measuring receiver shall be adjusted over the frequency range 25 MHz to 10 times the carrier frequency, not exceeding 40 GHz. For carrier frequencies above 20 GHz the measuring receiver shall be tuned over the range 25 MHz up to twice the carrier frequency, not exceeding 66 GHz, except for the channel on which the transmitter is intended to operate and for channelized systems, its adjacent channels. The frequency of each spurious emission detected shall be noted. If the test site is disturbed by interference coming from outside the site, this qualitative search may be performed in a screened room, with a reduced distance between the transmitter and the test antenna.

c) At each frequency at which an emission has been detected, the measuring receiver shall be tuned and the test antenna shall be raised or lowered through the specified height range until the maximum signal level is detected on the measuring receiver.

d) The transmitter shall be rotated through 360° about a vertical axis, to maximize the received signal.

e) The test antenna shall be raised or lowered again through the specified height range until a maximum is obtained. This level shall be noted.

f) The substitution antenna (see clause E.3.2) shall replace the transmitter antenna in the same position and in vertical polarization. It shall be connected to the signal generator.

g) At each frequency at which an emission has been detected, the signal generator, substitution antenna, and measuring receiver shall be tuned. The test antenna shall be raised or lowered through the specified height range until the maximum signal level is detected on the measuring receiver. The level of the signal generator giving the same signal level on the measuring receiver as in item e) shall be noted. After corrections due to the gain of the substitution antenna and the cable loss between the signal generator and the substitution antenna, is the radiated spurious emission at this frequency.

h) The frequency and level of each spurious emission measured and the bandwidth of the measuring receiver shall be recorded in the test report.

i) Steps c) to h) shall be repeated with the test antenna oriented in horizontal polarization.

j) If a user accessible power adjustment is provided then the tests in steps c) to h) shall be repeated at the lowest power setting available.

Steps c) to i) shall be repeated with the transmitter in the standby condition if this option is available.

Additional requirements for equipment employing FHSS modulation Measurements shall be carried out while the equipment is hopping between two frequencies separated by the maximum hop frequency change declared by the manufacturer, one of which is the lowest hop frequency.

The measurements shall be repeated on two frequencies separated by the maximum hop frequency change declared by the manufacturer, one of which is the highest hop frequency.

#### 3.5.1 E.U.T. Operation:

| Operating Environment:                                                                                                                                     |         |           |        |                       |         |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|--------|-----------------------|---------|--|--|
| Temperature:                                                                                                                                               | 22.2 °C | Humidity: | 53.1 % | Atmospheric Pressure: | 102 kPa |  |  |
|                                                                                                                                                            |         |           |        |                       |         |  |  |
| 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China |         |           |        |                       |         |  |  |
| Web: http://www.dace-lab.com       Tel: +86-755-23010613       E-mail: service@dace-lab.com       Page 16 of 71                                            |         |           |        |                       |         |  |  |

|          |                                                | 1C                      | . 6.                           |
|----------|------------------------------------------------|-------------------------|--------------------------------|
| <u>v</u> |                                                | DAC                     | 2AL                            |
|          |                                                | 1.0                     | Report No.: DACE240718006RL005 |
|          | 6                                              |                         |                                |
|          | Pretest mode:                                  | TM1, TM2, TM3, TM4, TM5 | 6                              |
|          | Final test mode:                               | TM1, TM2, TM3, TM4, TM5 |                                |
| Г        | 3.5.2 Test Setup Diagram                       | 1:                      |                                |
| e<br>D   |                                                |                         |                                |
|          | 3.5.3 Test Data:<br>Please Refer to Appendix t | for Details.            |                                |
|          |                                                |                         |                                |
|          |                                                |                         |                                |
|          |                                                |                         |                                |
|          |                                                |                         |                                |

DγC

Report No.: DACE240718006RL005

### 3.6 Receiver spurious radiations (25MHz to 1GHz)

| Test Limit:<br>Test Method:<br>Procedure: | The power of any spurious emission shall not exceed 2 n<br>1 GHz and shall not exceed 20 nW on frequencies above<br>Clause 4.3.5.3.1 & Clause 4.3.5.3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W in the range 25 MHz to 1 GHz.                                                                                                                                                                                                                                   |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:<br>Procedure:                | Clause 4.3.5.3.1 & Clause 4.3.5.3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                   |
| Procedure:                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                   |
|                                           | Method of measurement conducted spurious components<br>This requirement applies to all receivers. Spurious emissis<br>transmitter and receiver of full duplex equipment using a comeasured simultaneously and the test only needs to be co-<br>clause 4.2.4)."A test load, 50 W power attenuator, may be<br>measuring receiver (see clause 5.8.5) against damage who<br>combined in one unit with a transmitter.<br>The measuring receiver used shall have sufficient dynamic<br>achieve the required measurement accuracy at the specific<br>the measuring receiver shall be adjusted until the sensitive<br>receiver is at least 6 dB below the spurious emission limit<br>This bandwidth shall be recorded in the test report:<br>a) The receiver input terminals shall be connected to a me<br>an input impedance of 50 W and the receiver is switched | on levels from a<br>common port are<br>onducted once (see<br>a used to protect the<br>nen testing a receiver<br>ic range and sensitivity to<br>ied limit. The bandwidth of<br>ity of the measuring<br>given in clause 4.3.5.4.<br>easuring receiver having<br>on. |
|                                           | <ul> <li>b) For carrier frequencies in the range 1 GHz to 20 GHz to measuring receiver shall be adjusted over the frequency of the carrier frequency, not exceeding 40 GHz. For carrier f the measuring receiver shall be tuned over the range 25 M frequency not exceeding 66 GHz. The frequency and the each of the spurious components found shall be noted.</li> <li>c) If the detecting device is not calibrated in terms of power detected components shall be determined by replacing th generator and adjusting it to reproduce the frequency and component noted in step b). The absolute power level of the spurious component noted in step b).</li> </ul>                                                                                                                                                                                      | he frequency of the<br>range 25 MHz to 10 times<br>requencies above 20 GHz<br>MHz up to twice the carrier<br>absolute power level of<br>er input, the level of any<br>e receiver by the signal<br>level of every spurious<br>each spurious component              |
|                                           | <ul> <li>a) A test site selected from Annex E which fulfils the requi<br/>frequency range of this measurement shall be used. The<br/>oriented initially for vertical polarization and connected to<br/>bandwidth of the measuring receiver shall be adjusted um<br/>measuring receiver is at least 6 dB below the spurious emission</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | asured and the bandwidth<br>ort.<br>a permanent antenna<br>rements of the specified<br>test antenna shall be<br>a measuring receiver. The<br>til the sensitivity of the<br>hission limit given in                                                                 |
|                                           | <ul> <li>clause 4.3.5.4. This bandwidth shall be recorded in the term</li> <li>The receiver under test shall be placed on the support in connected to an artificial antenna, see clause 5.8.2.</li> <li>b) For carrier frequencies in the range 1 GHz to 20 GHz the measuring receiver shall be adjusted over the frequency in the carrier frequency, not exceeding 40 GHz. For carrier f the measuring receiver shall be tuned over the range 25 M frequency not exceeding 66 GHz. The frequency of each</li> </ul>                                                                                                                                                                                                                                                                                                                                       | st report.<br>its standard position and<br>he frequency of the<br>range 25 MHz to 10 times<br>requencies above 20 GHz<br>MHz up to twice the carrier<br>spurious component shall                                                                                  |
|                                           | <ul> <li>be noted. If the test site is disturbed by radiation coming f qualitative search may be performed in a screened room between the transmitter and the test antenna.</li> <li>c) At each frequency at which a component has been detereceiver shall be tuned and the test antenna shall be raise specified height range until the maximum signal level is dereceiver.</li> <li>d) The receiver shall be rotated up to 360° about a vertical received signal</li> </ul>                                                                                                                                                                                                                                                                                                                                                                              | rom outside the site, this<br>with reduced distance<br>ected, the measuring<br>ed or lowered through the<br>etected on the measuring<br>al axis, to maximize the                                                                                                  |

Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

V1.0 Report No.: DACE240718006RL005 DA range until a maximum is obtained. This level shall be noted. f) The substitution antenna (see clause E.3.2) shall replace the receiver antenna in the same position and in vertical polarization. It shall be connected to the signal generator. g) At each frequency at which a component has been detected, the signal generator, substitution antenna and measuring receiver shall be tuned. The test antenna shall be raised or lowered through the specified height range until the maximum signal level is detected on the measuring receiver. The level of the signal generator giving the same signal level on the measuring receiver as in step e) shall be noted. This level, after correction due to the gain of the substitution antenna and the cable loss, is the radiated spurious component at this frequency.

h) The frequency and level of each spurious emission measured and the bandwidth of the measuring receiver shall be recorded in the test report.

#### Measurements b) to h) shall be repeated with the test antenna oriented in horizontal polarization.

)De

)AC

#### 3.6.1 E.U.T. Operation:

| Operating Environment: |         |      |           |        |  |                       |             |
|------------------------|---------|------|-----------|--------|--|-----------------------|-------------|
| Temperature:           | 22.2 °C |      | Humidity: | 53.1 % |  | Atmospheric Pressure: | 102 kPa 🛛 🚽 |
| Pretest mode:          |         | TM6, | TM7       |        |  |                       |             |
| Final test mode:       |         | TM6, | TM7       |        |  |                       |             |

NE

)De

AC

#### 3.6.2 Test Data:

NE

NE

Please Refer to Appendix for Details.

NE

NC

.

DΔC

Report No.: DACE240718006RL005

#### 3.7 Receiver spurious radiations (above 1GHz)

| Test Requirement: | Clause 4.3.5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Limit:       | The power of any spurious emission shall not exceed 2 nW in the range 25 MHz to 1 GHz and shall not exceed 20 nW on frequencies above 1 GHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Test Method:      | Clause 4.3.5.3.1 & Clause 4.3.5.3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Procedure:        | Method of measurement conducted spurious components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Procedure:        | <ul> <li>Method of measurement conducted spurious components This requirement applies to all receivers. Spurious emission levels from a transmitter and receiver of full duplex equipment using a common port are measured simultaneously and the test only needs to be conducted once (see clause 4.2.4)."A test load, 50 W power attenuator, may be used to protect the measuring receiver (see clause 5.8.5) against damage when testing a receiver combined in one unit with a transmitter. The measuring receiver used shall have sufficient dynamic range and sensitivity to achieve the required measurement accuracy at the specified limit. The bandwidth of the measuring receiver shall be adjusted until the sensitivity of the measuring receiver is at least 6 dB below the spurious emission limit given in clause 4.3.5.4. This bandwidth shall be recorded in the test report: a) The receiver input terminals shall be connected to a measuring receiver having an input impedance of 50 W and the receiver is switched on. b) For carrier frequencies in the range 1 GHz to 20 GHz the frequency of the measuring receiver shall be adjusted over the frequency range 25 MHz to 10 times the carrier frequency, not exceeding 40 GHz. For carrier frequencies above 20 GHz the measuring receiver shall be tuned over the range 25 MHz up to twice the carrier frequency not exceeding 66 GHz. The frequency and the absolute power level of each of the spurious components found shall be noted. c) If the detecting device is not calibrated in terms of power input, the level of any detected components shall be determined by replacing the receiver by the signal generator and adjusting it to reproduce the frequency and level of every spurious component noted in step b). The absolute power level of each spurious component shall be noted.</li></ul> |
|                   | <ul> <li>shall be noted.</li> <li>d) The frequency and level of each spurious emission measured and the bandwidth of the measuring receiver shall be recorded in the test report.</li> <li>Method of measurement cabinet radiation</li> <li>This method of measurement applies to receivers having a permanent antenna connector:</li> <li>a) A test site selected from Annex E which fulfils the requirements of the specified frequency range of this measurement shall be used. The test antenna shall be oriented initially for vertical polarization and connected to a measuring receiver. The bandwidth of the measuring receiver shall be adjusted until the sensitivity of the measuring receiver is at least 6 dB below the spurious emission limit given in</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   | clause 4.3.5.4. This bandwidth shall be recorded in the test report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | The receiver under test shall be placed on the support in its standard position and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   | <ul> <li>b) For carrier frequencies in the range 1 GHz to 20 GHz the frequency of the measuring receiver shall be adjusted over the frequency range 25 MHz to 10 times the carrier frequency, not exceeding 40 GHz. For carrier frequencies above 20 GHz</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   | <ul> <li>the measuring receiver shall be tuned over the range 25 MHz up to twice the carrier frequency not exceeding 66 GHz. The frequency of each spurious component shall be noted. If the test site is disturbed by radiation coming from outside the site, this qualitative search may be performed in a screened room with reduced distance between the transmitter and the test antenna.</li> <li>c) At each frequency at which a component has been detected, the measuring receiver shall be tuned and the test antenna shall be raised or lowered through the</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   | <ul> <li>specified height range until the maximum signal level is detected on the measuring receiver.</li> <li>d) The receiver shall be rotated up to 360° about a vertical axis, to maximize the received signal.</li> <li>c) The test enterprise shall be received as levered are in the received signal.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | e  i ne test antenna snail be raised or lowered again through the specified height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

V1.0 Report No.: DACE240718006RL005 DA range until a maximum is obtained. This level shall be noted. f) The substitution antenna (see clause E.3.2) shall replace the receiver antenna in the same position and in vertical polarization. It shall be connected to the signal generator. g) At each frequency at which a component has been detected, the signal generator, substitution antenna and measuring receiver shall be tuned. The test antenna shall be raised or lowered through the specified height range until the maximum signal level is detected on the measuring receiver. The level of the signal generator giving the same signal level on the measuring receiver as in step e) shall be noted. This level, after correction due to the gain of the substitution antenna and the cable loss, is the radiated spurious component at this frequency. h) The frequency and level of each spurious emission measured and the bandwidth of the measuring receiver shall be recorded in the test report. Measurements b) to h) shall be repeated with the test antenna oriented in horizontal polarization.

#### 3.7.1 E.U.T. Operation:

| Operating Enviro     | onment: |      |           |        |                       |             |
|----------------------|---------|------|-----------|--------|-----------------------|-------------|
| Temperature: 22.2 °C |         |      | Humidity: | 53.1 % | Atmospheric Pressure: | 102 kPa 🚽 🚽 |
| Pretest mode:        |         | TM6, | TM7       |        |                       |             |
| Final test mode:     |         | TM6, | TM7       |        |                       |             |

NE

)De

AC

)De

)AC

.

#### 3.7.2 Test Data:

NE

NE

Please Refer to Appendix for Details.

NE

NC















| DAC — | V1.0    | A.       | Report No.: DACE240718006RL005 |
|-------|---------|----------|--------------------------------|
|       |         |          |                                |
|       |         |          |                                |
| E     |         |          |                                |
|       | ۲<br>نړ | Appendix |                                |
|       |         |          |                                |
|       |         |          | DAG                            |
|       |         |          |                                |
|       |         |          |                                |
| . 6   |         | 6        |                                |

Report No.: DACE240718006RL005

# HT240718003--DA802--5.8G--CE CE\_5.8G\_WIFI (EN 300440 V2.1.1\_2017-03) Test Data

### 1. -6dB Emission Bandwidth

V1.0

DΔC

| Condition | Antenna | Mode          | Frequency(MHz) | -6dB_Emission_Bandwidth(MHz) | Limit(MHz) | Result |
|-----------|---------|---------------|----------------|------------------------------|------------|--------|
| NVNT      | ANT1    | 802.11a       | 5745.00        | 16.365                       | 0.500      | Pass   |
| NVNT 🥟    | ANT1    | 802.11a       | 5785.00        | 16.336                       | 0.500      | Pass   |
| NVNT 📏    | ANT1    | 802.11a       | 5825.00        | 16.341                       | 0.500      | Pass   |
| NVNT      | ANT1    | 802.11n(HT20) | 5745.00        | 17.564                       | 0.500      | Pass   |
| NVNT      | ANT1    | 802.11n(HT20) | 5785.00        | 17.296                       | 0.500      | Pass   |
| NVNT      | ANT1    | 802.11n(HT20) | 5825.00        | 17.327                       | 0.500      | Pass   |
| NVNT      | ANT1    | 802.11n(HT40) | 5755.00        | 35.142                       | 0.500      | Pass   |
| NVNT      | ANT1    | 802.11n(HT40) | 5795.00        | 35.149                       | 0.500      | Pass   |
|           |         |               |                |                              |            |        |



V1.0 DAC Report No.: DACE240718006RL005 Keysight Spectrum Analyzer - Occu SENSE:INT ALIGN Center Freq: 5.78500000 GHz Trig: Free Run Avg|Hold: 10/10 #Atten: 40 dB 05:32:32 PM Jul 24, 2024 Radio Std: None Frequency Center Freq 5.785000000 GHz #IFGain:Low Radio Device: BTS Ref Offset 6.22 dB Ref 19.44 dBm **Center Freq** 5.785000000 GHz Center 5.785 GHz #Res BW 100 kHz Span 30 MHz Sweep 2.933 ms CF Step 0000 MHz Mar #VBW 300 kHz 3.000000 Auto Occupied Bandwidth **Total Power** 16.2 dBm 16.428 MHz Freq Offset 0 Hz Transmit Freq Error 167.99 kHz % of OBW Power 99.00 % 16.34 MHz x dB Bandwidth -6.00 dB x dB 6 Align Now All required NVNT\_ANT1\_802\_11a\_5825 Keysight Spectre SENSE:INT ALIGN OFF Center Freq: 5.825000000 GHz Trig: Free Run Avg|Hold: 10/10 #Atten: 40 dB 05:38:14 PM Jul 24, 2024 Radio Std: None Frequency Center Freq 5.825000000 GHz Radio Device: BTS Ref Offset 6.25 dB Ref 21.50 dBm 0 dB/di **Center Freq** 5.825000000 GHz When. Manna Span 30 MHz Sweep 2.933 ms Center 5.825 GHz #Res BW 100 kHz CF Step 3.000000 MHz Man #VBW 300 kHz Auto **Total Power** 17.3 dBm **Occupied Bandwidth** 16.465 MHz Freq Offset 0H -86.709 kHz % of OBW Power Transmit Freq Error 99.00 % 4 16.34 MHz x dB -6.00 dB x dB Bandwidth Align Now All required 1 NVNT\_ANT1\_802\_11n(HT20)\_5745 NE DAG 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 31 of 71

V1.0 Report No.: DACE240718006RL005 DAC Keysight Spectrum Analyzer - Occup SENSE:INT ALIGN C Center Freq: 6.745000000 GHz Trig: Free Run Avg|Hold: 10/10 #Atten: 40 dB 05:43:19 PM Jul 24, 2024 Radio Std: None Frequency Center Freq 5.745000000 GHz #IFGain:Low Radio Device: BTS Ref Offset 6.33 dB Ref 15.66 dBm **Center Freq** 5.745000000 GHz Center 5.745 GHz #Res BW 100 kHz Span 30 MHz Sweep 2.933 ms CF Step 0000 MHz Mar #VBW 300 kHz 3.000000 Auto Occupied Bandwidth **Total Power** 17.2 dBm 17.605 MHz Freq Offset 0 Hz Transmit Freq Error -74.959 kHz % of OBW Power 99.00 % 17.56 MHz x dB Bandwidth x dB -6.00 dB 6 Align Now All required NVNT\_ANT1\_802\_11n(HT20)\_5785 Keysight Spectrum An SENSE:INT ALIGN OFF Center Freq: 6.78500000 GHz Trig: Free Run Avg|Hold: 10/10 #Atten: 40 dB RI 05:48:37 PM Jul 24, 2024 Radio Std: None Frequency Center Freq 5.785000000 GHz Radio Device: BTS Ref Offset 6.22 dB Ref 19.44 dBm 0 dB/di **Center Freq** 5.785000000 GHz - Dona Bo fl Span 30 MHz Sweep 2.933 ms Center 5.785 GHz #Res BW 100 kHz CF Step 3.000000 MHz Man #VBW 300 kHz Auto **Total Power** 16.1 dBm **Occupied Bandwidth** 17.596 MHz Freq Offset 0H -84.597 kHz % of OBW Power Transmit Freq Error 99.00 % 4 17.30 MHz x dB -6.00 dB x dB Bandwidth Align Now All required 1 NVNT\_ANT1\_802\_11n(HT20)\_5825 NE DAG 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 32 of 71

V1.0 DAC Report No.: DACE240718006RL005 Keysight Spectrum Analyzer - Occu SENSE:INT ALIGN C Center Freq: 6.825000000 GHz Trig: Free Run Avg|Hold: 10/10 #Atten: 40 dB 10:26:16 AM Jul 25, 2024 Radio Std: None Frequency Center Freq 5.825000000 GHz #IFGain:Low Radio Device: BTS Ref Offset 6.25 dB Ref 15.50 dBm **Center Freq** 5.825000000 GHz Center 5.825 GHz #Res BW 100 kHz Span 30 MHz Sweep 2.933 ms CF Step 0000 MHz Mar #VBW 300 kHz 3.000000 Auto Occupied Bandwidth **Total Power** 15.9 dBm 17.597 MHz Freq Offset 0 Hz Transmit Freq Error 183.18 kHz % of OBW Power 99.00 % x dB Bandwidth 17.33 MHz -6.00 dB x dB NVNT\_ANT1\_802\_11n(HT40)\_5755 Keysight Spectru SENSE:INT ALIGN OFF Center Freq: 5.755000000 GHz Trig: Free Run Avg|Hold: 10/10 #Atten: 40 dB RI 10:30:08 AM Jul 25, 2024 Radio Std: None Frequency Center Freq 5.755000000 GHz Radio Device: BTS Ref Offset 6.34 dB Ref 17.68 dBm 0 dB/div **Center Freq** 5.755000000 GHz 1.1. A. L. A. A. 1. A. L.A. Span 60 MHz Sweep 5.8 ms Center 5.755 GHz #Res BW 100 kHz CF Step 6.000000 MHz Man #VBW 300 kHz Auto **Total Power** 17.0 dBm **Occupied Bandwidth** 35.797 MHz Freq Offset 0H 173.32 kHz % of OBW Power Transmit Freq Error 99.00 % 4 35.14 MHz x dB -6.00 dB x dB Bandwidth **I**STATUS NVNT\_ANT1\_802\_11n(HT40)\_5795 NE 1 DAG 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 33 of 71

| DAG – | V1.0                                                                                                                                                                                                                                           | E                                                                                            | R                                                                                     | eport No.: DACE240718          | 3006RL005 |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------|-----------|
| DAG   | Keysight Spectrum Analyzer - Occupied BW           W         RL         RF         50.0         AC           Center Freq 5.7950000000 GHz         #IFGain:Lo           Ref Offset 6.3 dB         10 dB/div         Ref 11.60 dBm           Log | SENSE:INTI ▲<br>Center Freq: 5,79500000 GHz<br>→ Trig: Free Run Avg Hold:<br>w #Atten: 40 dB | ALIGN OFF   10:33:52 AM Jul 25, 2024<br>Radio Std: None<br>10/10<br>Radio Device: BTS | Frequency<br>Center Freq       |           |
| D     | -10 4         -10 4           -28 4         -10 4           -38 4         -10 4           -48 4         -10 4           -58 4         -10 4           -78 4         -10 4           Center 5.795 GHz         #Res BW 100 kHz                   | #VBW 300 kHz                                                                                 | Span 60 MHz<br>Sweep 5.8 ms                                                           | CF Step<br>6.00000 MHz         |           |
| E     | Occupied Bandwidth<br>35.757<br>Transmit Freq Error 148.7<br>x dB Bandwidth 35.1                                                                                                                                                               | Total Power<br>MHz<br>72 kHz % of OBW Power<br>5 MHz x dB                                    | 16.1 dBm<br>r 99.00 %<br>-6.00 dB                                                     | uto Man<br>Freq Offset<br>0 Hz |           |
|       | 30                                                                                                                                                                                                                                             |                                                                                              |                                                                                       |                                |           |
|       |                                                                                                                                                                                                                                                |                                                                                              |                                                                                       |                                |           |
|       |                                                                                                                                                                                                                                                |                                                                                              |                                                                                       |                                | 200       |
|       | DAC                                                                                                                                                                                                                                            |                                                                                              |                                                                                       |                                |           |
|       |                                                                                                                                                                                                                                                |                                                                                              |                                                                                       |                                |           |

D

Report No.: DACE240718006RL005

#### 2. RF output power

DΔG

| Condition         Antenna         Mode         Frequency<br>(ML)         Ant_Cain(dis)         Burst<br>Power (dis)         Burst<br>(MC)         Burst<br>(dis)         Burst<br>(dis)         Lumit<br>(dis)         Result           NVNT         ANT1         802.11a         5745.00         0.00         5.89         446         5.89         13.98         Pass           LVLT         ANT1         802.11a         5745.00         0.00         5.77         47         5.77         13.98         Pass           HVLT         ANT1         802.11a         5745.00         0.00         5.59         47         5.50         13.98         Pass           NVNT         ANT1         802.11a         5785.00         0.00         4.22         466         4.24         13.98         Pass           LVHT         ANT1         802.11a         5785.00         0.00         4.29         466         4.29         13.98         Pass           LVHT         ANT1         802.11a         5785.00         0.00         5.40         4.70         13.98         Pass           LVHT         ANT1         802.11a         5825.00         0.00         5.40         4.7         5.71         13.98         Pass           L                                                                                                             |           |         |               |                    |               |                              |                 |                   |                |        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|---------------|--------------------|---------------|------------------------------|-----------------|-------------------|----------------|--------|
| NVNT         ANT1         802.11a         5745.00         0.00         6.02         47         6.02         13.98         Pass           LVLT         ANT1         802.11a         5745.00         0.00         5.77         47         5.77         13.98         Pass           HVLT         ANT1         802.11a         5745.00         0.00         5.77         47         5.75         13.98         Pass           HVLT         ANT1         802.11a         5745.00         0.00         4.25         47         4.25         13.98         Pass           NVNT         ANT1         802.11a         5785.00         0.00         4.22         46         4.24         13.98         Pass           LVLT         ANT1         802.11a         5785.00         0.00         4.29         46         4.29         13.98         Pass           HVHT         ANT1         802.11a         5785.00         0.00         5.51         47         5.51         13.98         Pass           NVNT         ANT1         802.11a         5825.00         0.00         5.41         47         5.51         13.98         Pass           LVHT         ANT1         802.11a         58                                                                                                                                                          | Condition | Antenna | Mode          | Frequency<br>(MHz) | ANT_Gain(dBi) | Max Burst RMS<br>Power (dBm) | Burst<br>Number | Max EIRP<br>(dBm) | Limit<br>(dBm) | Result |
| LVLT         ANT1         802.11a         5745.00         0.00         5.89         46         5.87         13.88         Pass           LVHT         ANT1         802.11a         5745.00         0.00         5.70         447         5.77         13.88         Pass           HVLT         ANT1         802.11a         5745.00         0.00         5.50         477         5.59         13.98         Pass           NVNT         ANT1         802.11a         5785.00         0.00         4.24         46         4.24         13.98         Pass           LVLT         ANT1         802.11a         5785.00         0.00         4.29         46         4.29         13.98         Pass           HVLT         ANT1         802.11a         5785.00         0.00         4.29         46         4.29         13.98         Pass           HVLT         ANT1         802.11a         5825.00         0.00         5.51         47         5.51         13.98         Pass           LVHT         ANT1         802.11a         5825.00         0.00         5.40         47         5.40         13.98         Pass           LVHT         ANT1         802.11a                                                                                                                                                                   | NVNT      | ANT1    | 802.11a       | 5745.00            | 0.00          | 6.02                         | 47              | 6.02              | 13.98          | Pass   |
| LVHT         ANT1         802.11a         5745.00         0.00         5.77         47         5.77         13.88         Pass           HVLT         ANT1         802.11a         5745.00         0.00         5.70         46         6.70         13.98         Pass           NVNT         ANT1         802.11a         5745.00         0.00         4.25         47         4.25         13.98         Pass           LVLT         ANT1         802.11a         5785.00         0.00         4.24         46         4.29         13.98         Pass           LVHT         ANT1         802.11a         5785.00         0.00         4.29         46         4.29         13.98         Pass           HVHT         ANT1         802.11a         5785.00         0.00         5.51         47         5.51         13.98         Pass           LVLT         ANT1         802.11a         5825.00         0.00         5.40         47         5.40         13.98         Pass           LVHT         ANT1         802.11a         5825.00         0.00         5.20         5.0         5.0         13.98         Pass           LVHT         ANT1         802.11a         58                                                                                                                                                          | LVLT      | ANT1    | 802.11a       | 5745.00            | 0.00          | 5.89                         | 46              | 5.89              | 13.98          | Pass   |
| HVLT         ANT1         802.11a         5745.00         0.00         5.70         46         5.70         13.98         Pass           HVHT         ANT1         802.11a         5745.00         0.00         4.25         47         4.25         13.98         Pass           LVLT         ANT1         802.11a         5785.00         0.00         4.24         46         4.24         13.98         Pass           LVLT         ANT1         802.11a         5785.00         0.00         4.29         46         4.29         13.98         Pass           HVHT         ANT1         802.11a         5785.00         0.00         4.29         46         4.29         13.98         Pass           NVNT         ANT1         802.11a         5825.00         0.00         5.51         47         5.51         13.98         Pass           LVLT         ANT1         802.11a         5825.00         0.00         5.30         47         5.40         13.98         Pass           LVLT         ANT1         802.11a         5825.00         0.00         5.30         47         5.30         13.98         Pass           LVLT         ANT1         802.11a         58                                                                                                                                                          | LVHT      | ANT1    | 802.11a       | 5745.00            | 0.00          | 5.77                         | 47              | 5.77              | 13.98          | Pass   |
| HVHT         ANT1         802.11a         578.00         0.00         5.59         47         5.59         13.98         Pass           NVNT         ANT1         802.11a         578.00         0.00         4.25         47         4.25         13.98         Pass           LVLT         ANT1         802.11a         578.00         0.00         4.29         46         4.29         13.98         Pass           HVLT         ANT1         802.11a         578.00         0.00         4.29         46         4.29         13.98         Pass           HVHT         ANT1         802.11a         578.00         0.00         5.51         47         5.51         13.98         Pass           NVNT         ANT1         802.11a         582.00         0.00         5.45         46         5.45         13.98         Pass           LVLT         ANT1         802.11a         582.00         0.00         5.30         47         5.30         13.98         Pass           LVLT         ANT1         802.11a         582.00         0.00         5.20         13.98         Pass           LVLT         ANT1         802.11a         582.00         0.00         5.13 </td <td>HVLT</td> <td>ANT1</td> <td>802.11a</td> <td>5745.00</td> <td>0.00</td> <td>5.70</td> <td>46</td> <td>5.70</td> <td>13.98</td> <td>Pass</td>      | HVLT      | ANT1    | 802.11a       | 5745.00            | 0.00          | 5.70                         | 46              | 5.70              | 13.98          | Pass   |
| NVNT         ANT1         802.11a         5785.00         0.00         4.25         47         4.25         13.98         Pass           LVLT         ANT1         802.11a         5785.00         0.00         4.29         46         4.29         13.98         Pass           LVHT         ANT1         802.11a         5785.00         0.00         4.29         46         4.29         13.98         Pass           HVHT         ANT1         802.11a         5785.00         0.00         5.51         47         5.51         13.98         Pass           NVNT         ANT1         802.11a         5825.00         0.00         5.45         46         5.45         13.98         Pass           LVLT         ANT1         802.11a         5825.00         0.00         5.40         47         5.40         13.98         Pass           HVHT         ANT1         802.11a         5825.00         0.00         5.20         5.20         13.98         Pass           HVHT         ANT1         802.11a         5825.00         0.00         5.20         5.20         13.98         Pass           LVLT         ANT1         802.11a(HT20)         5745.00         0.00                                                                                                                                                        | HVHT      | ANT1    | 802.11a       | 5745.00            | 0.00          | 5.59                         | 47              | 5.59              | 13.98          | Pass   |
| LVLT         ANT1         802.11a         5785.00         0.00         4.24         46         4.24         13.98         Pass           LVHT         ANT1         802.11a         5785.00         0.00         4.29         46         4.29         13.98         Pass           HVLT         ANT1         802.11a         5785.00         0.00         4.29         46         4.29         13.98         Pass           NVNT         ANT1         802.11a         5785.00         0.00         5.51         47         5.51         13.98         Pass           LVLT         ANT1         802.11a         5825.00         0.00         5.45         46         5.45         13.98         Pass           LVLT         ANT1         802.11a         5825.00         0.00         5.20         13.98         Pass           HVLT         ANT1         802.11a         5825.00         0.00         5.20         13.98         Pass           LVLT         ANT1         802.11a         5826.00         0.00         5.18         13.98         Pass           LVLT         ANT1         802.11a         5745.00         0.00         5.18         13.98         Pass                                                                                                                                                                        | NVNT      | ANT1    | 802.11a       | 5785.00            | 0.00          | 4.25                         | 47              | 4.25              | 13.98          | Pass   |
| LVHT         ANT1         802.11a         5785.00         0.00         4.29         46         4.29         13.98         Pass           HVLT         ANT1         802.11a         5785.00         0.00         4.29         46         4.29         13.98         Pass           HVHT         ANT1         802.11a         5785.00         0.00         5.51         47         5.51         13.98         Pass           LVLT         ANT1         802.11a         5825.00         0.00         5.45         46         5.45         13.98         Pass           LVHT         ANT1         802.11a         5825.00         0.00         5.30         47         5.30         13.98         Pass           HVHT         ANT1         802.11a         5825.00         0.00         5.20         50         5.20         13.98         Pass           NVNT         ANT1         802.11n(HT20)         5745.00         0.00         5.18         49         5.18         13.98         Pass           LVHT         ANT1         802.11n(HT20)         5745.00         0.00         5.08         13.98         Pass           LVHT         ANT1         802.11n(HT20)         5785.00         0                                                                                                                                                 | LVLT      | ANT1    | 802.11a       | 5785.00            | 0.00          | 4.24                         | 46              | 4.24              | 13.98          | Pass   |
| HVLT         ANT1         802.11a         5785.00         0.00         4.29         46         4.29         13.98         Pass           NVNT         ANT1         802.11a         5785.00         0.00         5.51         47         5.51         13.98         Pass           LVLT         ANT1         802.11a         5825.00         0.00         5.45         46         5.45         13.98         Pass           LVLT         ANT1         802.11a         5825.00         0.00         5.40         47         5.40         13.98         Pass           HVLT         ANT1         802.11a         5825.00         0.00         5.20         13.98         Pass           NVNT         ANT1         802.11n(HT20)         5745.00         0.00         5.13         49         5.18         13.98         Pass           LVLT         ANT1         802.11n(HT20)         5745.00         0.00         5.08         13.98         Pass           LVLT         ANT1         802.11n(HT20)         5745.00         0.00         5.08         13.98         Pass           LVLT         ANT1         802.11n(HT20)         5785.00         0.00         4.24         5.0         4.24                                                                                                                                                  | LVHT      | ANT1    | 802.11a       | 5785.00            | 0.00          | 4.29                         | 46              | 4.29              | 13.98          | Pass   |
| HVHT         ANT1         802.11a         5785.00         0.00         4.29         46         4.29         13.98         Pass           NVNT         ANT1         802.11a         5825.00         0.00         5.51         47         5.51         13.98         Pass           LVLT         ANT1         802.11a         5825.00         0.00         5.45         46         5.45         13.98         Pass           HVLT         ANT1         802.11a         5825.00         0.00         5.30         47         5.30         13.98         Pass           HVLT         ANT1         802.11a         5825.00         0.00         5.27         47         5.27         13.98         Pass           NVNT         ANT1         802.11n(HT20)         5745.00         0.00         5.13         49         5.13         13.98         Pass           LVLT         ANT1         802.11n(HT20)         5745.00         0.00         5.08         5.08         13.98         Pass           HVLT         ANT1         802.11n(HT20)         5745.00         0.00         4.25         50         4.26         13.98         Pass           NVNT         ANT1         802.11n(HT20) <t< td=""><td>HVLT</td><td>ANT1</td><td>802.11a</td><td>5785.00</td><td>0.00</td><td>4.29</td><td>46</td><td>4.29</td><td>13.98</td><td>Pass</td></t<> | HVLT      | ANT1    | 802.11a       | 5785.00            | 0.00          | 4.29                         | 46              | 4.29              | 13.98          | Pass   |
| NVNT         ANT1         802.11a         5825.00         0.00         5.51         47         5.51         13.98         Pass           LVLT         ANT1         802.11a         5825.00         0.00         5.45         46         5.45         13.98         Pass           LVHT         ANT1         802.11a         5825.00         0.00         5.40         47         5.40         13.98         Pass           HVLT         ANT1         802.11a         5825.00         0.00         5.27         47         5.27         13.98         Pass           NVNT         ANT1         802.11n(HT20)         5745.00         0.00         5.18         49         5.18         13.98         Pass           LVLT         ANT1         802.11n(HT20)         5745.00         0.00         5.13         49         5.13         13.98         Pass           LVHT         ANT1         802.11n(HT20)         5745.00         0.00         5.08         5.08         13.98         Pass           LVLT         ANT1         802.11n(HT20)         5785.00         0.00         4.25         50         4.25         13.98         Pass           LVHT         ANT1         802.11n(HT20)                                                                                                                                                  | HVHT      | ANT1    | 802.11a 👞     | 5785.00            | 0.00          | 4.29                         | 46              | 4.29              | 13.98          | Pass   |
| LVLT         ANT1         802.11a         5825.00         0.00         5.45         46         5.45         13.98         Pass           LVHT         ANT1         802.11a         5825.00         0.00         5.30         47         5.40         13.98         Pass           HVLT         ANT1         802.11a         5825.00         0.00         5.27         47         5.27         13.98         Pass           HVLT         ANT1         802.11n(HT20)         5745.00         0.00         5.18         49         5.18         13.98         Pass           LVLT         ANT1         802.11n(HT20)         5745.00         0.00         5.13         49         5.13         13.98         Pass           LVHT         ANT1         802.11n(HT20)         5745.00         0.00         5.09         49         5.09         13.98         Pass           HVHT         ANT1         802.11n(HT20)         5745.00         0.00         4.25         50         4.26         13.98         Pass           LVHT         ANT1         802.11n(HT20)         5785.00         0.00         4.23         50         4.24         13.98         Pass           LVHT         ANT1         <                                                                                                                                             | NVNT      | ANT1    | 802.11a       | 5825.00            | 0.00          | 5.51                         | 47              | 5.51              | 13.98          | Pass   |
| LVHT         ANT1         802.11a         5825.00         0.00         5.40         47         5.40         13.98         Pass           HVLT         ANT1         802.11a         5825.00         0.00         5.30         47         5.30         13.98         Pass           HVHT         ANT1         802.11a         5825.00         0.00         5.27         47         5.27         13.98         Pass           NVNT         ANT1         802.11n(HT20)         5745.00         0.00         5.18         49         5.18         13.98         Pass           LVHT         ANT1         802.11n(HT20)         5745.00         0.00         5.13         49         5.13         13.98         Pass           HVLT         ANT1         802.11n(HT20)         5745.00         0.00         5.08         50         5.08         13.98         Pass           NVNT         ANT1         802.11n(HT20)         5785.00         0.00         4.25         13.98         Pass           LVLT         ANT1         802.11n(HT20)         5785.00         0.00         4.24         50         4.24         13.98         Pass           LVHT         ANT1         802.11n(HT20)         5785.00<                                                                                                                                        | LVLT      | ANT1    | 802.11a       | 5825.00            | 0.00          | 5.45                         | 46              | 5.45              | 13.98          | Pass   |
| HVLT         ANT1         802.11a         5825.00         0.00         5.30         47         5.30         13.98         Pass           HVHT         ANT1         802.11a         5825.00         0.00         5.27         47         5.27         13.98         Pass           NVT         ANT1         802.11n(HT20)         5745.00         0.00         5.18         49         5.18         13.98         Pass           LVLT         ANT1         802.11n(HT20)         5745.00         0.00         5.18         49         5.18         13.98         Pass           LVHT         ANT1         802.11n(HT20)         5745.00         0.00         5.09         49         5.09         13.98         Pass           HVLT         ANT1         802.11n(HT20)         5745.00         0.00         4.25         50         4.25         13.98         Pass           LVLT         ANT1         802.11n(HT20)         5785.00         0.00         4.25         50         4.23         13.98         Pass           LVLT         ANT1         802.11n(HT20)         5785.00         0.00         4.24         50         4.24         13.98         Pass           LVHT         ANT1                                                                                                                                                  | LVHT      | ANT1    | 802.11a       | 5825.00            | 0.00          | 5.40                         | 47              | 5.40              | 13.98          | Pass   |
| HVHT         ANT1         802.11a         5825.00         0.00         5.27         47         5.27         13.98         Pass           NVNT         ANT1         802.11n(HT20)         5745.00         0.00         5.20         50         5.20         13.98         Pass           LVLT         ANT1         802.11n(HT20)         5745.00         0.00         5.18         49         5.18         13.98         Pass           LVLT         ANT1         802.11n(HT20)         5745.00         0.00         5.08         13.98         Pass           HVLT         ANT1         802.11n(HT20)         5745.00         0.00         5.08         13.98         Pass           NVNT         ANT1         802.11n(HT20)         5785.00         0.00         4.25         50         4.23         13.98         Pass           LVLT         ANT1         802.11n(HT20)         5785.00         0.00         4.24         50         4.24         13.98         Pass           LVLT         ANT1         802.11n(HT20)         5785.00         0.00         4.26         50         4.26         13.98         Pass           HVHT         ANT1         802.11n(HT20)         5785.00         0.00                                                                                                                                        | HVLT      | ANT1    | 802.11a       | 5825.00            | 0.00          | 5.30                         | 47              | 5.30              | 13.98          | Pass   |
| NVNT         ANT1         802.11n(HT20)         5745.00         0.00         5.20         50         5.20         13.98         Pass           LVLT         ANT1         802.11n(HT20)         5745.00         0.00         5.18         49         5.18         13.98         Pass           LVHT         ANT1         802.11n(HT20)         5745.00         0.00         5.13         49         5.13         13.98         Pass           HVLT         ANT1         802.11n(HT20)         5745.00         0.00         5.09         49         5.09         13.98         Pass           HVLT         ANT1         802.11n(HT20)         5785.00         0.00         4.25         50         4.25         13.98         Pass           LVLT         ANT1         802.11n(HT20)         5785.00         0.00         4.23         50         4.24         13.98         Pass           LVHT         ANT1         802.11n(HT20)         5785.00         0.00         4.24         50         4.24         13.98         Pass           HVLT         ANT1         802.11n(HT20)         5785.00         0.00         4.25         49         4.25         13.98         Pass           NVNT         A                                                                                                                                        | HVHT      | ANT1    | 802.11a       | 5825.00            | 0.00          | 5.27                         | 47              | 5.27              | 13.98          | Pass   |
| LVLT         ANT1         802.11n(HT20)         5745.00         0.00         5.18         49         5.18         13.98         Pass           LVHT         ANT1         802.11n(HT20)         5745.00         0.00         5.13         49         5.13         13.98         Pass           HVLT         ANT1         802.11n(HT20)         5745.00         0.00         5.09         49         5.09         13.98         Pass           HVHT         ANT1         802.11n(HT20)         5745.00         0.00         5.08         50         5.08         13.98         Pass           NVNT         ANT1         802.11n(HT20)         5785.00         0.00         4.25         50         4.25         13.98         Pass           LVLT         ANT1         802.11n(HT20)         5785.00         0.00         4.24         50         4.24         13.98         Pass           HVLT         ANT1         802.11n(HT20)         5785.00         0.00         4.24         50         4.26         13.98         Pass           HVLT         ANT1         802.11n(HT20)         5785.00         0.00         3.97         50         3.97         13.98         Pass           NVNT         A                                                                                                                                        | NVNT      | ANT1    | 802.11n(HT20) | 5745.00            | 0.00          | 5.20                         | 50              | 5.20              | 13.98          | Pass   |
| LVHT         ANT1         802.11n(HT20)         5745.00         0.00         5.13         49         5.13         13.98         Pass           HVLT         ANT1         802.11n(HT20)         5745.00         0.00         5.09         49         5.09         13.98         Pass           HVHT         ANT1         802.11n(HT20)         5745.00         0.00         5.08         50         5.08         13.98         Pass           NVNT         ANT1         802.11n(HT20)         5785.00         0.00         4.25         50         4.25         13.98         Pass           LVLT         ANT1         802.11n(HT20)         5785.00         0.00         4.24         50         4.24         13.98         Pass           LVHT         ANT1         802.11n(HT20)         5785.00         0.00         4.26         50         4.26         13.98         Pass           HVHT         ANT1         802.11n(HT20)         5785.00         0.00         4.14         50         4.14         13.98         Pass           LVLT         ANT1         802.11n(HT20)         5825.00         0.00         3.97         50         3.97         13.98         Pass           LVLT         A                                                                                                                                        | LVLT      | ANT1    | 802.11n(HT20) | 5745.00 <          | 0.00          | 5.18                         | 49              | 5.18              | 13.98          | Pass   |
| HVLT         ANT1         802.11n(HT20)         5745.00         0.00         5.09         49         5.09         13.98         Pass           HVHT         ANT1         802.11n(HT20)         5745.00         0.00         5.08         50         5.08         13.98         Pass           NVNT         ANT1         802.11n(HT20)         5785.00         0.00         4.25         50         4.25         13.98         Pass           LVLT         ANT1         802.11n(HT20)         5785.00         0.00         4.23         50         4.24         13.98         Pass           LVHT         ANT1         802.11n(HT20)         5785.00         0.00         4.24         50         4.24         13.98         Pass           HVLT         ANT1         802.11n(HT20)         5785.00         0.00         4.26         50         4.26         13.98         Pass           NVNT         ANT1         802.11n(HT20)         5825.00         0.00         3.97         50         3.97         13.98         Pass           LVLT         ANT1         802.11n(HT20)         5825.00         0.00         3.75         50         3.75         13.98         Pass           HVLT         A                                                                                                                                        | LVHT      | ANT1    | 802.11n(HT20) | 5745.00            | 0.00          | 5.13                         | 49              | 5.13              | 13.98          | Pass   |
| HVHTANT1802.11n(HT20)5745.000.005.08505.0813.98PassNVNTANT1802.11n(HT20)5785.000.004.25504.2513.98PassLVLTANT1802.11n(HT20)5785.000.004.23504.2313.98PassLVHTANT1802.11n(HT20)5785.000.004.24504.2413.98PassHVLTANT1802.11n(HT20)5785.000.004.26504.2613.98PassHVHTANT1802.11n(HT20)5785.000.004.25494.2513.98PassHVHTANT1802.11n(HT20)5785.000.004.14504.1413.98PassNVNTANT1802.11n(HT20)5825.000.003.97503.9713.98PassLVLTANT1802.11n(HT20)5825.000.003.86503.8613.98PassLVHTANT1802.11n(HT20)5825.000.003.75503.7513.98PassLVHTANT1802.11n(HT20)5825.000.003.68503.6813.98PassHVLTANT1802.11n(HT40)5755.000.004.89944.8913.98PassLVHTANT1802.11n(HT40)5755.000.004.86944.8613.98PassLVHTANT1802.11n(HT40)5755.000.004.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HVLT      | ANT1    | 802.11n(HT20) | 5745.00            | 0.00          | 5.09                         | 49              | 5.09              | 13.98          | Pass   |
| NVNT         ANT1         802.11n(HT20)         5785.00         0.00         4.25         50         4.25         13.98         Pass           LVLT         ANT1         802.11n(HT20)         5785.00         0.00         4.23         50         4.23         13.98         Pass           LVHT         ANT1         802.11n(HT20)         5785.00         0.00         4.24         50         4.24         13.98         Pass           HVLT         ANT1         802.11n(HT20)         5785.00         0.00         4.26         50         4.26         13.98         Pass           HVHT         ANT1         802.11n(HT20)         5785.00         0.00         4.25         49         4.25         13.98         Pass           NVNT         ANT1         802.11n(HT20)         5825.00         0.00         3.97         50         3.97         13.98         Pass           LVLT         ANT1         802.11n(HT20)         5825.00         0.00         3.86         50         3.86         13.98         Pass           LVLT         ANT1         802.11n(HT20)         5825.00         0.00         3.68         50         3.68         13.98         Pass           HVLT         A                                                                                                                                        | HVHT      | ANT1    | 802.11n(HT20) | 5745.00            | 0.00          | 5.08                         | 50              | 5.08              | 13.98          | Pass   |
| LVLT         ANT1         802.11n(HT20)         5785.00         0.00         4.23         50         4.23         13.98         Pass           LVHT         ANT1         802.11n(HT20)         5785.00         0.00         4.24         50         4.24         13.98         Pass           HVLT         ANT1         802.11n(HT20)         5785.00         0.00         4.26         50         4.26         13.98         Pass           HVHT         ANT1         802.11n(HT20)         5785.00         0.00         4.25         49         4.25         13.98         Pass           NVNT         ANT1         802.11n(HT20)         5825.00         0.00         4.14         50         4.14         13.98         Pass           LVLT         ANT1         802.11n(HT20)         5825.00         0.00         3.97         50         3.97         13.98         Pass           LVHT         ANT1         802.11n(HT20)         5825.00         0.00         3.75         50         3.75         13.98         Pass           HVHT         ANT1         802.11n(HT20)         5825.00         0.00         3.68         50         3.68         13.98         Pass           NVNT         A                                                                                                                                        | NVNT      | ANT1    | 802.11n(HT20) | 5785.00            | 0.00          | 4.25                         | 50              | 4.25              | 13.98          | Pass   |
| LVHT         ANT1         802.11n(HT20)         5785.00         0.00         4.24         50         4.24         13.98         Pass           HVLT         ANT1         802.11n(HT20)         5785.00         0.00         4.26         50         4.26         13.98         Pass           HVHT         ANT1         802.11n(HT20)         5785.00         0.00         4.25         49         4.25         13.98         Pass           NVNT         ANT1         802.11n(HT20)         5825.00         0.00         4.14         50         4.14         13.98         Pass           LVLT         ANT1         802.11n(HT20)         5825.00         0.00         3.97         50         3.97         13.98         Pass           LVLT         ANT1         802.11n(HT20)         5825.00         0.00         3.75         50         3.75         13.98         Pass           HVLT         ANT1         802.11n(HT20)         5825.00         0.00         3.68         50         3.68         13.98         Pass           NVNT         ANT1         802.11n(HT20)         5855.00         0.00         4.89         94         4.89         13.98         Pass           LVLT         A                                                                                                                                        | LVLT      | ANT1    | 802.11n(HT20) | 5785.00            | 0.00          | 4.23                         | 50              | 4.23              | 13.98          | Pass   |
| HVLTANT1802.11n(HT20)5785.000.004.26504.2613.98PassHVHTANT1802.11n(HT20)5785.000.004.25494.2513.98PassNVNTANT1802.11n(HT20)5825.000.004.14504.1413.98PassLVLTANT1802.11n(HT20)5825.000.003.97503.9713.98PassLVHTANT1802.11n(HT20)5825.000.003.86503.8613.98PassHVLTANT1802.11n(HT20)5825.000.003.75503.7513.98PassHVHTANT1802.11n(HT20)5825.000.003.68503.6813.98PassNVNTANT1802.11n(HT20)5825.000.004.89944.8913.98PassLVLTANT1802.11n(HT40)5755.000.004.89944.8013.98PassLVLTANT1802.11n(HT40)5755.000.004.81944.8113.98PassLVLTANT1802.11n(HT40)5755.000.004.76944.7613.98PassHVLTANT1802.11n(HT40)5755.000.004.73944.7613.98PassHVLTANT1802.11n(HT40)5755.000.004.76944.7613.98PassHVLTANT1802.11n(HT40)575.000.003.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LVHT      | ANT1    | 802.11n(HT20) | 5785.00            | 0.00          | 4.24                         | 50              | 4.24              | 13.98          | Pass   |
| HVHTANT1802.11n(HT20)5785.000.004.25494.2513.98PassNVNTANT1802.11n(HT20)5825.000.004.14504.1413.98PassLVLTANT1802.11n(HT20)5825.000.003.97503.9713.98PassLVHTANT1802.11n(HT20)5825.000.003.86503.8613.98PassHVLTANT1802.11n(HT20)5825.000.003.75503.7513.98PassHVLTANT1802.11n(HT20)5825.000.003.68503.6813.98PassHVHTANT1802.11n(HT20)5825.000.003.68503.6813.98PassHVHTANT1802.11n(HT40)575.000.004.89944.8913.98PassLVLTANT1802.11n(HT40)575.000.004.86944.8613.98PassLVLTANT1802.11n(HT40)575.000.004.76944.7613.98PassHVHTANT1802.11n(HT40)575.000.004.73944.7313.98PassHVHTANT1802.11n(HT40)575.000.003.89943.8913.98PassHVHTANT1802.11n(HT40)5795.000.003.92943.9213.98PassLVLTANT1802.11n(HT40)5795.000.003.90 <td>HVLT</td> <td>ANT1</td> <td>802.11n(HT20)</td> <td>5785.00</td> <td>0.00</td> <td>4.26</td> <td>50</td> <td>4.26</td> <td>13.98</td> <td>Pass</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HVLT      | ANT1    | 802.11n(HT20) | 5785.00            | 0.00          | 4.26                         | 50              | 4.26              | 13.98          | Pass   |
| NVNTANT1802.11n(HT20)5825.000.004.14504.1413.98PassLVLTANT1802.11n(HT20)5825.000.003.97503.9713.98PassLVHTANT1802.11n(HT20)5825.000.003.86503.8613.98PassHVLTANT1802.11n(HT20)5825.000.003.75503.7513.98PassHVHTANT1802.11n(HT20)5825.000.003.68503.6813.98PassHVHTANT1802.11n(HT20)5825.000.003.68503.6813.98PassNVNTANT1802.11n(HT40)5755.000.004.89944.8913.98PassLVLTANT1802.11n(HT40)5755.000.004.86944.8613.98PassLVLTANT1802.11n(HT40)5755.000.004.81944.8113.98PassLVHTANT1802.11n(HT40)5755.000.004.76944.7613.98PassHVLTANT1802.11n(HT40)5755.000.004.73944.7313.98PassHVHTANT1802.11n(HT40)5795.000.003.92943.8913.98PassLVLTANT1802.11n(HT40)5795.000.003.92943.9013.98PassLVLTANT1802.11n(HT40)5795.000.003.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HVHT      | ANT1    | 802.11n(HT20) | 5785.00            | 0.00          | 4.25                         | 49              | 4.25              | 13.98          | Pass   |
| LVLTANT1802.11n(HT20)5825.000.003.97503.9713.98PassLVHTANT1802.11n(HT20)5825.000.003.86503.8613.98PassHVLTANT1802.11n(HT20)5825.000.003.75503.7513.98PassHVHTANT1802.11n(HT20)5825.000.003.68503.6813.98PassHVHTANT1802.11n(HT20)5825.000.003.68503.6813.98PassNVNTANT1802.11n(HT40)5755.000.004.89944.8913.98PassLVLTANT1802.11n(HT40)5755.000.004.86944.8613.98PassLVLTANT1802.11n(HT40)5755.000.004.81944.8113.98PassHVLTANT1802.11n(HT40)5755.000.004.76944.7613.98PassHVLTANT1802.11n(HT40)5755.000.004.73944.7313.98PassHVHTANT1802.11n(HT40)5795.000.003.89943.8913.98PassLVLTANT1802.11n(HT40)5795.000.003.92943.9213.98PassLVLTANT1802.11n(HT40)5795.000.003.90943.9013.98PassLVHTANT1802.11n(HT40)5795.000.003.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NVNT      | ANT1    | 802.11n(HT20) | 5825.00            | 0.00          | 4.14                         | 50              | 4.14              | 13.98          | Pass   |
| LVHTANT1802.11n(HT20)5825.000.003.86503.8613.98PassHVLTANT1802.11n(HT20)5825.000.003.75503.7513.98PassHVHTANT1802.11n(HT20)5825.000.003.68503.6813.98PassNVNTANT1802.11n(HT40)5755.000.004.89944.8913.98PassLVLTANT1802.11n(HT40)5755.000.004.86944.8613.98PassLVLTANT1802.11n(HT40)5755.000.004.81944.8113.98PassLVHTANT1802.11n(HT40)5755.000.004.81944.8113.98PassHVLTANT1802.11n(HT40)5755.000.004.76944.7613.98PassHVLTANT1802.11n(HT40)5755.000.004.73944.7313.98PassHVHTANT1802.11n(HT40)575.000.003.89943.8913.98PassNVNTANT1802.11n(HT40)5795.000.003.92943.9213.98PassLVLTANT1802.11n(HT40)5795.000.003.90943.9013.98PassLVHTANT1802.11n(HT40)5795.000.003.90943.9013.98PassLVHTANT1802.11n(HT40)5795.000.003.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LVLT      | ANT1    | 802.11n(HT20) | 5825.00            | 0.00          | 3.97                         | 50              | 3.97              | 13.98          | Pass   |
| HVLTANT1802.11n(HT20)5825.000.003.75503.7513.98PassHVHTANT1802.11n(HT20)5825.000.003.68503.6813.98PassNVNTANT1802.11n(HT40)5755.000.004.89944.8913.98PassLVLTANT1802.11n(HT40)5755.000.004.86944.8613.98PassLVLTANT1802.11n(HT40)5755.000.004.81944.8113.98PassLVHTANT1802.11n(HT40)5755.000.004.76944.7613.98PassHVLTANT1802.11n(HT40)5755.000.004.73944.7613.98PassHVHTANT1802.11n(HT40)5755.000.004.73944.7313.98PassNVNTANT1802.11n(HT40)5795.000.003.89943.8913.98PassLVLTANT1802.11n(HT40)5795.000.003.92943.9213.98PassLVLTANT1802.11n(HT40)5795.000.003.90943.9013.98PassLVHTANT1802.11n(HT40)5795.000.003.91943.9013.98PassHVLTANT1802.11n(HT40)5795.000.003.91943.9013.98PassHVLTANT1802.11n(HT40)5795.000.003.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LVHT      | ANT1    | 802.11n(HT20) | 5825.00            | 0.00          | 3.86                         | 50              | 3.86              | 13.98          | Pass   |
| HVHTANT1802.11n(HT20)5825.000.003.68503.6813.98PassNVNTANT1802.11n(HT40)5755.000.004.89944.8913.98PassLVLTANT1802.11n(HT40)5755.000.004.86944.8613.98PassLVHTANT1802.11n(HT40)5755.000.004.86944.8113.98PassHVLTANT1802.11n(HT40)5755.000.004.76944.7613.98PassHVLTANT1802.11n(HT40)5755.000.004.76944.7613.98PassHVHTANT1802.11n(HT40)5755.000.004.73944.7313.98PassNVNTANT1802.11n(HT40)5795.000.003.89943.8913.98PassLVLTANT1802.11n(HT40)5795.000.003.92943.9213.98PassLVLTANT1802.11n(HT40)5795.000.003.90943.9013.98PassLVHTANT1802.11n(HT40)5795.000.003.91943.9113.98PassHVLTANT1802.11n(HT40)5795.000.003.91943.9113.98PassHVLTANT1802.11n(HT40)5795.000.003.90943.9013.98PassHVHTANT1802.11n(HT40)5795.000.003.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HVLT      | ANT1    | 802.11n(HT20) | 5825.00            | 0.00          | 3.75                         | 50              | 3.75              | 13.98          | Pass   |
| NVNTANT1802.11n(HT40)5755.000.004.89944.8913.98PassLVLTANT1802.11n(HT40)5755.000.004.86944.8613.98PassLVHTANT1802.11n(HT40)5755.000.004.81944.8113.98PassHVLTANT1802.11n(HT40)5755.000.004.76944.7613.98PassHVLTANT1802.11n(HT40)5755.000.004.76944.7313.98PassHVHTANT1802.11n(HT40)5755.000.004.73944.7313.98PassNVNTANT1802.11n(HT40)5795.000.003.89943.8913.98PassLVLTANT1802.11n(HT40)5795.000.003.92943.9213.98PassLVLTANT1802.11n(HT40)5795.000.003.90943.9013.98PassHVLTANT1802.11n(HT40)5795.000.003.91943.9113.98PassHVLTANT1802.11n(HT40)5795.000.003.91943.9113.98PassHVHTANT1802.11n(HT40)5795.000.003.90943.9113.98PassHVHTANT1802.11n(HT40)5795.000.003.90943.9013.98PassHVHTANT1802.11n(HT40)5795.000.003.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HVHT      | ANT1    | 802.11n(HT20) | 5825.00            | 0.00          | 3.68                         | 50              | 3.68              | 13.98          | Pass   |
| LVLTANT1802.11n(HT40)5755.000.004.86944.8613.98PassLVHTANT1802.11n(HT40)5755.000.004.81944.8113.98PassHVLTANT1802.11n(HT40)5755.000.004.76944.7613.98PassHVHTANT1802.11n(HT40)5755.000.004.76944.7313.98PassNVNTANT1802.11n(HT40)5755.000.004.73944.7313.98PassLVLTANT1802.11n(HT40)5795.000.003.89943.8913.98PassLVLTANT1802.11n(HT40)5795.000.003.92943.9213.98PassLVHTANT1802.11n(HT40)5795.000.003.90943.9013.98PassHVLTANT1802.11n(HT40)5795.000.003.91943.9113.98PassHVLTANT1802.11n(HT40)5795.000.003.90943.9113.98PassHVHTANT1802.11n(HT40)5795.000.003.90943.9013.98PassHVHTANT1802.11n(HT40)5795.000.003.90943.9013.98PassHVHTANT1802.11n(HT40)5795.000.003.90943.9013.98Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NVNT      | ANT1    | 802.11n(HT40) | 5755.00            | 0.00          | 4.89                         | 94              | 4.89              | 13.98          | Pass   |
| LVHTANT1802.11n(HT40)5755.000.004.81944.8113.98PassHVLTANT1802.11n(HT40)5755.000.004.76944.7613.98PassHVHTANT1802.11n(HT40)5755.000.004.73944.7313.98PassNVNTANT1802.11n(HT40)5795.000.003.89943.8913.98PassLVLTANT1802.11n(HT40)5795.000.003.92943.9213.98PassLVLTANT1802.11n(HT40)5795.000.003.90943.9013.98PassLVHTANT1802.11n(HT40)5795.000.003.90943.9013.98PassHVLTANT1802.11n(HT40)5795.000.003.91943.9113.98PassHVHTANT1802.11n(HT40)5795.000.003.90943.9013.98PassHVHTANT1802.11n(HT40)5795.000.003.90943.9113.98PassHVHTANT1802.11n(HT40)5795.000.003.90943.9013.98PassHVHTANT1802.11n(HT40)5795.000.003.90943.9013.98Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LVLT      | ANT1    | 802.11n(HT40) | 5755.00            | 0.00          | 4.86                         | 94              | 4.86              | 13.98          | Pass   |
| HVLTANT1802.11n(HT40)5755.000.004.76944.7613.98PassHVHTANT1802.11n(HT40)5755.000.004.73944.7313.98PassNVNTANT1802.11n(HT40)5795.000.003.89943.8913.98PassLVLTANT1802.11n(HT40)5795.000.003.92943.9213.98PassLVLTANT1802.11n(HT40)5795.000.003.92943.9213.98PassLVHTANT1802.11n(HT40)5795.000.003.90943.9013.98PassHVLTANT1802.11n(HT40)5795.000.003.91943.9113.98PassHVHTANT1802.11n(HT40)5795.000.003.90943.9113.98PassHVHTANT1802.11n(HT40)5795.000.003.90943.9013.98Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LVHT      | ANT1    | 802.11n(HT40) | 5755.00            | 0.00          | 4.81                         | 94              | 4.81              | 13.98          | Pass   |
| HVHTANT1802.11n(HT40)5755.000.004.73944.7313.98PassNVNTANT1802.11n(HT40)5795.000.003.89943.8913.98PassLVLTANT1802.11n(HT40)5795.000.003.92943.9213.98PassLVHTANT1802.11n(HT40)5795.000.003.92943.9213.98PassLVHTANT1802.11n(HT40)5795.000.003.90943.9013.98PassHVLTANT1802.11n(HT40)5795.000.003.91943.9113.98PassHVHTANT1802.11n(HT40)5795.000.003.90943.9013.98Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HVLT      | ANT1    | 802.11n(HT40) | 5755.00            | 0.00          | 4.76                         | 94              | 4.76              | 13.98          | Pass   |
| NVNT         ANT1         802.11n(HT40)         5795.00         0.00         3.89         94         3.89         13.98         Pass           LVLT         ANT1         802.11n(HT40)         5795.00         0.00         3.92         94         3.92         13.98         Pass           LVLT         ANT1         802.11n(HT40)         5795.00         0.00         3.92         94         3.92         13.98         Pass           LVHT         ANT1         802.11n(HT40)         5795.00         0.00         3.90         94         3.90         13.98         Pass           HVLT         ANT1         802.11n(HT40)         5795.00         0.00         3.91         94         3.91         13.98         Pass           HVHT         ANT1         802.11n(HT40)         5795.00         0.00         3.91         94         3.91         13.98         Pass           HVHT         ANT1         802.11n(HT40)         5795.00         0.00         3.90         94         3.90         13.98         Pass                                                                                                                                                                                                                                                                                                                | HVHT      | ANT1    | 802.11n(HT40) | 5755.00            | 0.00          | 4.73                         | 94              | 4.73              | 13.98          | Pass   |
| LVLTANT1802.11n(HT40)5795.000.003.92943.9213.98PassLVHTANT1802.11n(HT40)5795.000.003.90943.9013.98PassHVLTANT1802.11n(HT40)5795.000.003.91943.9113.98PassHVHTANT1802.11n(HT40)5795.000.003.91943.9113.98PassHVHTANT1802.11n(HT40)5795.000.003.90943.9013.98Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NVNT      | ANT1    | 802.11n(HT40) | 5795.00            | 0.00          | 3.89                         | 94              | 3.89              | 13.98          | Pass   |
| LVHT         ANT1         802.11n(HT40)         5795.00         0.00         3.90         94         3.90         13.98         Pass           HVLT         ANT1         802.11n(HT40)         5795.00         0.00         3.91         94         3.91         13.98         Pass           HVHT         ANT1         802.11n(HT40)         5795.00         0.00         3.90         94         3.91         13.98         Pass           HVHT         ANT1         802.11n(HT40)         5795.00         0.00         3.90         94         3.90         13.98         Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LVLT      | ANT1    | 802.11n(HT40) | 5795.00            | 0.00          | 3.92                         | 94              | 3.92              | 13.98          | Pass   |
| HVLT         ANT1         802.11n(HT40)         5795.00         0.00         3.91         94         3.91         13.98         Pass           HVHT         ANT1         802.11n(HT40)         5795.00         0.00         3.90         94         3.90         13.98         Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LVHT      | ANT1    | 802.11n(HT40) | 5795.00            | 0.00          | 3.90                         | 94              | 3.90              | 13.98          | Pass 🍵 |
| HVHT         ANT1         802.11n(HT40)         5795.00         0.00         3.90         94         3.90         13.98         Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HVLT      | ANT1    | 802.11n(HT40) | 5795.00            | 0.00          | 3.91                         | 94              | 3.91              | 13.98          | Pass   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HVHT      | ANT1    | 802.11n(HT40) | 5795.00            | 0.00          | 3.90                         | 94              | 3.90              | 13.98          | Pass   |

NVNT\_ANT1\_802\_11a\_Power\_5745

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com































![](_page_50_Figure_0.jpeg)

![](_page_51_Figure_0.jpeg)

![](_page_52_Figure_0.jpeg)

![](_page_53_Figure_0.jpeg)

![](_page_54_Figure_0.jpeg)

Report No.: DACE240718006RL005

٩

V1.0

3. Permitted range of operating frequencies

DΔC

| Condition | Antenna            | Modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Frequency(MHz)                     | Measured Frequency (MHz)                             | limit(dBm) | Result |
|-----------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------|------------|--------|
| NVNT      | ANT1               | 802.11a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5745.00                            | 5735.880                                             | >=5725     | Pass   |
| NVNT      | ANT1               | 802.11a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5825.00                            | 5834.200                                             | <=5875     | Pass   |
| NVNT      | ANT1               | 802.11n(HT20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5745.00                            | 5735.280                                             | >=5725     | Pass   |
| NVNT      | ANT1               | 802.11n(HT20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5825.00                            | 5834.840                                             | <=5875     | Pass   |
| NVNT      | ANT1               | 802.11n(HT40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5755.00                            | 5736.680                                             | >=5725     | Pass   |
| NVNT      | ANT1               | 802.11n(HT40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5795.00                            | 5813.720                                             | <=5875     | Pass   |
|           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                      |            |        |
|           |                    | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IVNT ANT1 802 1                    | 12 5745                                              |            |        |
|           | Kewight Spectrum   | Analyzer Sweet SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                                                      |            |        |
|           |                    | F 50 Ω AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SENSE:INT #Avo                     | ALIGN OFF 05:26:31 PM Jul 24, 2024                   | quency     |        |
|           | Center Tree        | PNO: Fast ↔<br>IFGain:Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Trig: Free Run Avg<br>Atten: 14 dB | Hold: 10/10 TYPE WWWWW<br>DET P N N N N              |            |        |
|           | R                  | ef Offset 6.33 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    | Mkr1 5.735 88 GHz                                    | Auto Tune  |        |
|           | 10 dB/div R<br>Log | ef 9.33 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Y I                                | -29.445 dBm                                          |            |        |
|           | -0.67              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | annamala anandrinanan              |                                                      | enter Freq |        |
|           | -20.7              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    | 0.74                                                 | 00000 312  |        |
|           | -30.7              | and the second s |                                    |                                                      | Start Freq |        |
|           | -40.7              | waren have waren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    | 17 Mar 10 Mar 10 10 10 10 10 10 10 10 10 10 10 10 10 | 000000 GHz |        |
|           | -60.7              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | the proof Mar [1]                                    |            |        |
|           | -70.7              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | 5 765                                                | Stop Freq  |        |
|           | -80.7              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                      |            |        |
|           | Center 5.745       | 00 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    | Span 40.00 MHz                                       | CF Step    |        |
|           | MKR MODE TRC S     | นไม่ X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Y FUNCTION                         | FUNCTION WIDTH FUNCTION VALUE                        | Man        |        |
|           | 1 N 1 1            | 5.735 88 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -29.445 dBm                        |                                                      |            |        |
|           | 3 4                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                      | 0 Hz       |        |
|           | 6                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                      |            |        |
|           | 8                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                      | Scale Type |        |
|           | 10                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | Log                                                  | Lin        |        |
|           | ×                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m                                  |                                                      |            |        |
|           | Mau                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | Align Now All required                               |            |        |
|           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                      |            |        |
|           |                    | N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IVNT_ANT1_802_1                    | 1a_5825                                              |            |        |
|           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                      |            |        |
|           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                      |            |        |
|           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                      |            |        |
|           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                      |            |        |
|           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                      |            |        |
|           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                      |            |        |
|           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                      |            |        |
|           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                      |            |        |
|           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                      |            |        |
|           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                      |            |        |
|           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                      |            |        |
|           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                      |            |        |
|           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                      |            |        |
|           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                      |            |        |
|           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                      |            |        |
|           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                      |            |        |
|           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                      |            |        |
|           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                      |            |        |
|           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                      |            |        |
|           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                      |            |        |

![](_page_56_Figure_0.jpeg)

![](_page_57_Figure_0.jpeg)

| <b>DΔG</b> — | V1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ort No.: DACE240718006RL00                                                                      |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| DAG          | Keysight Spectrum Analyzer - Swept SA           Center Freq 5.795000000 GHz         SENSE:           PNO: Fast            If Gain:Low         Trig: Free Ru<br>IFGain:Low           Ref Offset 6.3 dB         Context for the sense:           10 dB/div         Ref 11.30 dBm           130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INT         Aution opp         10:34:55 AM Jul 25, 2024           #Avg Type: RMS<br>Avg Held: 10/10         TRACE 12 3.4 4.5<br>UPACE 12 3.5 | Frequency   Auto Tune   Center Freq   95000000 GHz   Start Freq   55000000 GHz                  |
| E            | 407         407         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4087         4 | Span 80.00 MHz<br>Sweep 84.40 ms (1001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stop Freq<br>35000000 GHz<br>CF Step<br>8.00000 MHz<br>Man<br>Freq Offset<br>0 Hz<br>Scale Type |
| DAG          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                 |

D

V

Report No.: DACE240718006RL005

#### 4. spurious emissions

DΔC

|      |           |                                       |               |                    |                  | P                 | -                      |                        |            |        |
|------|-----------|---------------------------------------|---------------|--------------------|------------------|-------------------|------------------------|------------------------|------------|--------|
|      | Condition | Antenna                               | Mode          | Frequency<br>(MHz) | Range            | Spur<br>Freq(MHz) | Spur Freq<br>Peak(dBm) | Spur Level<br>RMS(dBm) | Limit(dBm) | Result |
|      | NVNT      | ANT1                                  | 802.11a       | 5745.00            | 30.00~47.00      | 35.35             | -65.08                 | N/A                    | -36        | Pass   |
|      | NVNT      | ANT1                                  | 802.11a       | 5745.00            | 47.00~74.00      | 66.25             | -64.97                 | N/A                    | -54        | Pass   |
|      | NVNT      | ANT1                                  | 802.11a       | 5745.00            | 74.00~87.50      | 86.71             | -64.22                 | N/A                    | -36        | Pass   |
|      | NVNT      | ANT1                                  | 802.11a       | 5745.00            | 87.50~118.00     | 117.39            | -64.74                 | N/A                    | -54        | Pass   |
|      | NVNT      | ANT1                                  | 802.11a       | 5745.00            | 118.00~174.00    | 149.78            | -63.90                 | N/A                    | -36        | Pass   |
|      | NVNT      | ANT1                                  | 802.11a       | 5745.00            | 174.00~230.00    | 225.10            | -62.90                 | N/A                    | -54        | Pass   |
|      | NVNT      | ANT1                                  | 802.11a       | 5745.00            | 230.00~470.00    | 413.04            | -63.46                 | N/A                    | -36        | Pass   |
|      | NVNT      | ANT1                                  | 802.11a       | 5745.00            | 470.00~862.00    | 849.52            | -63.35                 | N/A                    | -54        | Pass   |
| 6. C | NVNT      | ANT1                                  | 802.11a       | 5745.00            | 862.00~1000.00   | 866.19            | -63.78                 | N/A                    | -36        | Pass   |
|      | NVNT      | ANT1                                  | 802.11a 👞     | 5745.00            | 1000.00~5725.00  | 5725.00           | -39.29                 | N/A                    | -30        | Pass   |
|      | NVNT      | ANT1                                  | 802.11a       | 5745.00            | 5725.00~5875.00  | 5744.10           | 6.50                   | 1                      | 1          | /      |
|      | NVNT      | ANT1                                  | 802.11a       | 5745.00            | 5875.00~26000.00 | 25003.14          | -38.95                 | N/A                    | -30        | Pass   |
|      | NVNT      | ANT1                                  | 802.11a       | 5785.00            | 30.00~47.00      | 40.02             | -65.63                 | N/A                    | -36        | Pass   |
|      | NVNT      | ANT1                                  | 802.11a       | 5785.00            | 47.00~74.00      | 58.84             | -64.98                 | N/A                    | -54        | Pass   |
|      | NVNT      | ANT1                                  | 802.11a       | 5785.00            | 74.00~87.50      | 80.19             | -65.65                 | N/A                    | -36        | Pass   |
|      | NVNT      | ANT1                                  | 802.11a       | 5785.00            | 87.50~118.00     | 96.95             | -65.21                 | N/A                    | -54        | Pass   |
|      | NVNT      | ANT1                                  | 802.11a       | 5785.00            | 118.00~174.00    | 129.54            | -64.39                 | N/A                    | -36        | Pass   |
|      | NVNT      | ANT1                                  | 802.11a       | 5785.00            | 174.00~230.00    | 227.06            | -64.03                 | N/A                    | -54        | Pass   |
|      | NVNT      | ANT1                                  | 802.11a       | 5785.00            | 230.00~470.00    | 380.44            | -63.87                 | N/A                    | -36        | Pass   |
|      | NVNT      | ANT1                                  | 802.11a       | 5785.00            | 470.00~862.00    | 586.69            | -63.36                 | N/A                    | -54        | Pass   |
|      | NVNT      | ANT1                                  | 802.11a       | 5785.00            | 862.00~1000.00   | 935.80            | -63.91                 | N/A                    | -36        | Pass   |
|      | NVNT      | ANT1                                  | 802.11a       | 5785.00            | 1000.00~5725.00  | 5672.71           | -46.40                 | N/A                    | -30        | Pass   |
|      | NVNT      | ANT1                                  | 802.11a       | 5785.00            | 5725.00~5875.00  | 5790.02           | 6.50                   | 1                      | 1          | 1      |
|      | NVNT      | ANT1                                  | 802.11a       | 5785.00            | 5875.00~26000.00 | 24528.19          | -39.03                 | N/A                    | -30        | Pass   |
|      | NVNT      | ANT1                                  | 802.11a       | 5825.00            | 30.00~47.00      | 34.41             | -65.83                 | N/A                    | -36        | Pass   |
|      | NVNT      | ANT1                                  | 802.11a       | 5825.00            | 47.00~74.00      | 47.81             | -65.66                 | N/A                    | -54        | Pass   |
|      | NVNT      | ANT1                                  | 802.11a       | 5825.00            | 74.00~87.50      | 83.73             | -65.48                 | N/A                    | -36        | Pass   |
|      | NVNT      | ANT1                                  | 802.11a       | 5825.00            | 87.50~118.00     | 109.36            | -63.68                 | N/A                    | -54        | Pass   |
|      | NVNT      | ANT1                                  | 802.11a       | 5825.00            | 118.00~174.00    | 136.22            | -64.41                 | N/A                    | -36        | Pass   |
|      | NVNT      | ANT1                                  | 802.11a       | 5825.00            | 174.00~230.00    | 203.16            | -63.71                 | N/A                    | -54        | Pass   |
|      | NVNT      | ANT1                                  | 802.11a       | 5825.00            | 230.00~470.00    | 429.47            | -64.07                 | N/A                    | -36        | Pass   |
|      | NVNT      | ANT1                                  | 802.11a       | 5825.00            | 470.00~862.00    | 847.04            | -63.62                 | N/A                    | -54        | Pass   |
|      | NVNT      | ANT1                                  | 802.11a       | 5825.00            | 862.00~1000.00   | 907.35            | -63.70                 | N/A                    | -36        | Pass   |
|      | NVNT      | ANT1                                  | 802.11a       | 5825.00            | 1000.00~5725.00  | 5683.26           | -47.10                 | N/A                    | -30        | Pass   |
|      | NVNT      | ANT1                                  | 802.11a       | 5825.00            | 5725.00~5875.00  | 5823.44           | 6.53                   | 1                      | 1          | /      |
|      | NVNT      | ANT1                                  | 802.11a       | 5825.00            | 5875.00~26000.00 | 25505.60          | -38.62                 | N/A                    | -30        | Pass   |
|      | NVNT      | ANT1                                  | 802.11n(HT20) | 5745.00            | 30.00~47.00      | 36.29 🧹           | -65.31                 | N/A                    | -36        | Pass   |
|      | NVNT      | ANT1                                  | 802.11n(HT20) | 5745.00            | 47.00~74.00      | 72.30             | -65.25                 | N/A                    | -54        | Pass 🧳 |
|      | NVNT      | ANT1                                  | 802.11n(HT20) | 5745.00            | 74.00~87.50      | 85.68             | -65.04                 | N/A                    | -36        | Pass   |
|      | NVNT      | ANT1                                  | 802.11n(HT20) | 5745.00            | 87.50~118.00     | 103.55            | -65.40                 | N/A                    | -54        | Pass   |
|      | NVNT      | ANT1                                  | 802.11n(HT20) | 5745.00            | 118.00~174.00    | 148.90            | -64.09                 | N/A                    | -36        | Pass   |
|      | NVNT      | ANT1                                  | 802.11n(HT20) | 5745.00            | 174.00~230.00    | 223.81            | -63.39                 | N/A                    | -54        | Pass   |
|      | NVNT      | ANT1                                  | 802.11n(HT20) | 5745.00            | 230.00~470.00    | 417.25            | -63.77                 | N/A                    | -36        | Pass   |
|      | NVNT      | ANT1                                  | 802.11n(HT20) | 5745.00            | 470.00~862.00    | 835.04            | -63.53                 | N/A                    | -54        | Pass   |
|      | NVNT      | ANT1                                  | 802.11n(HT20) | 5745.00            | 862.00~1000.00   | 877.46            | -63.60                 | N/A                    | -36        | Pass   |
|      | NVNT      | ANT1                                  | 802.11n(HT20) | 5745.00            | 1000.00~5725.00  | 5725.00           | -38.73                 | N/A                    | -30        | Pass   |
|      | NVNT      | ANT1                                  | 802.11n(HT20) | 5745.00            | 5725.00~5875.00  | 5748.28           | 6.26                   | 1                      | 1          | /      |
|      |           | · · · · · · · · · · · · · · · · · · · |               |                    |                  |                   | •                      | •                      |            |        |

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613

Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

V1.0

DΔC

Report No.: DACE240718006RL005

|   | NVNT | ANT1 | 802.11n(HT20) | 5745.00 | 5875.00~26000.00 | 25082.30 | -39.15 | N/A | -30 | Pass |
|---|------|------|---------------|---------|------------------|----------|--------|-----|-----|------|
|   | NVNT | ANT1 | 802.11n(HT20) | 5785.00 | 30.00~47.00      | 32.29    | -65.94 | N/A | -36 | Pass |
| ſ | NVNT | ANT1 | 802.11n(HT20) | 5785.00 | 47.00~74.00      | 59.87    | -65.25 | N/A | -54 | Pass |
| ſ | NVNT | ANT1 | 802.11n(HT20) | 5785.00 | 74.00~87.50      | 80.01    | -64.64 | N/A | -36 | Pass |
|   | NVNT | ANT1 | 802.11n(HT20) | 5785.00 | 87.50~118.00     | 103.39   | -65.03 | N/A | -54 | Pass |
|   | NVNT | ANT1 | 802.11n(HT20) | 5785.00 | 118.00~174.00    | 162.52   | -63.61 | N/A | -36 | Pass |
|   | NVNT | ANT1 | 802.11n(HT20) | 5785.00 | 174.00~230.00    | 178.73   | -64.20 | N/A | -54 | Pass |
| Ī | NVNT | ANT1 | 802.11n(HT20) | 5785.00 | 230.00~470.00    | 394.74   | -64.11 | N/A | -36 | Pass |
| Ī | NVNT | ANT1 | 802.11n(HT20) | 5785.00 | 470.00~862.00    | 730.60   | -63.64 | N/A | -54 | Pass |
|   | NVNT | ANT1 | 802.11n(HT20) | 5785.00 | 862.00~1000.00   | 932.81   | -63.71 | N/A | -36 | Pass |
|   | NVNT | ANT1 | 802.11n(HT20) | 5785.00 | 1000.00~5725.00  | 5725.00  | -46.16 | N/A | -30 | Pass |
|   | NVNT | ANT1 | 802.11n(HT20) | 5785.00 | 5725.00~5875.00  | 5788.03  | 5.41   | 1   | 1   | /    |
|   | NVNT | ANT1 | 802.11n(HT20) | 5785.00 | 5875.00~26000.00 | 25066.87 | -38.37 | N/A | -30 | Pass |
|   | NVNT | ANT1 | 802.11n(HT20) | 5825.00 | 30.00~47.00      | 34.53    | -65.32 | N/A | -36 | Pass |
|   | NVNT | ANT1 | 802.11n(HT20) | 5825.00 | 47.00~74.00      | 63.07    | -65.32 | N/A | -54 | Pass |
|   | NVNT | ANT1 | 802.11n(HT20) | 5825.00 | 74.00~87.50      | 80.00    | -65.37 | N/A | -36 | Pass |
| ſ | NVNT | ANT1 | 802.11n(HT20) | 5825.00 | 87.50~118.00     | 93.61    | -65.54 | N/A | -54 | Pass |
|   | NVNT | ANT1 | 802.11n(HT20) | 5825.00 | 118.00~174.00    | 125.22   | -64.21 | N/A | -36 | Pass |
|   | NVNT | ANT1 | 802.11n(HT20) | 5825.00 | 174.00~230.00    | 219.21   | -64.26 | N/A | -54 | Pass |
|   | NVNT | ANT1 | 802.11n(HT20) | 5825.00 | 230.00~470.00    | 448.16   | -64.47 | N/A | -36 | Pass |
| 1 | NVNT | ANT1 | 802.11n(HT20) | 5825.00 | 470.00~862.00    | 535.56   | -64.25 | N/A | -54 | Pass |
|   | NVNT | ANT1 | 802.11n(HT20) | 5825.00 | 862.00~1000.00   | 863.76   | -63.59 | N/A | -36 | Pass |
|   | NVNT | ANT1 | 802.11n(HT20) | 5825.00 | 1000.00~5725.00  | 5707.52  | -48.14 | N/A | -30 | Pass |
|   | NVNT | ANT1 | 802.11n(HT20) | 5825.00 | 5725.00~5875.00  | 5827.62  | 4.11   | 1   | 1   | /    |
|   | NVNT | ANT1 | 802.11n(HT20) | 5825.00 | 5875.00~26000.00 | 24556.37 | -39.41 | N/A | -30 | Pass |
|   | NVNT | ANT1 | 802.11n(HT40) | 5755.00 | 30.00~47.00      | 44.18    | -65.00 | N/A | -36 | Pass |
|   | NVNT | ANT1 | 802.11n(HT40) | 5755.00 | 47.00~74.00      | 73.62    | -64.34 | N/A | -54 | Pass |
|   | NVNT | ANT1 | 802.11n(HT40) | 5755.00 | 74.00~87.50      | 77.48    | -65.07 | N/A | -36 | Pass |
| ſ | NVNT | ANT1 | 802.11n(HT40) | 5755.00 | 87.50~118.00     | 91.95    | -65.69 | N/A | -54 | Pass |
|   | NVNT | ANT1 | 802.11n(HT40) | 5755.00 | 118.00~174.00    | 139.52   | -64.21 | N/A | -36 | Pass |
|   | NVNT | ANT1 | 802.11n(HT40) | 5755.00 | 174.00~230.00    | 200.00   | -63.62 | N/A | -54 | Pass |
|   | NVNT | ANT1 | 802.11n(HT40) | 5755.00 | 230.00~470.00    | 448.63   | -64.37 | N/A | -36 | Pass |
|   | NVNT | ANT1 | 802.11n(HT40) | 5755.00 | 470.00~862.00    | 696.35   | -63.72 | N/A | -54 | Pass |
|   | NVNT | ANT1 | 802.11n(HT40) | 5755.00 | 862.00~1000.00   | 876.45   | -63.51 | N/A | -36 | Pass |
|   | NVNT | ANT1 | 802.11n(HT40) | 5755.00 | 1000.00~5725.00  | 5723.58  | -35.49 | N/A | -30 | Pass |
|   | NVNT | ANT1 | 802.11n(HT40) | 5755.00 | 5725.00~5875.00  | 5761.87  | 4.81   | 1   | 1   | 1    |
|   | NVNT | ANT1 | 802.11n(HT40) | 5755.00 | 5875.00~26000.00 | 25023.94 | -38.75 | N/A | -30 | Pass |
|   | NVNT | ANT1 | 802.11n(HT40) | 5795.00 | 30.00~47.00      | 35.94    | -65.59 | N/A | -36 | Pass |
|   | NVNT | ANT1 | 802.11n(HT40) | 5795.00 | 47.00~74.00      | 57.82    | -64.18 | N/A | -54 | Pass |
|   | NVNT | ANT1 | 802.11n(HT40) | 5795.00 | 74.00~87.50      | 83.02 🧹  | -64.94 | N/A | -36 | Pass |
|   | NVNT | ANT1 | 802.11n(HT40) | 5795.00 | 87.50~118.00     | 95.39    | -65.76 | N/A | -54 | Pass |
|   | NVNT | ANT1 | 802.11n(HT40) | 5795.00 | 118.00~174.00    | 133.58   | -63.86 | N/A | -36 | Pass |
|   | NVNT | ANT1 | 802.11n(HT40) | 5795.00 | 174.00~230.00    | 212.88   | -64.14 | N/A | -54 | Pass |
|   | NVNT | ANT1 | 802.11n(HT40) | 5795.00 | 230.00~470.00    | 450.34   | -63.99 | N/A | -36 | Pass |
|   | NVNT | ANT1 | 802.11n(HT40) | 5795.00 | 470.00~862.00    | 803.45   | -63.00 | N/A | -54 | Pass |
|   | NVNT | ANT1 | 802.11n(HT40) | 5795.00 | 862.00~1000.00   | 884.75   | -64.24 | N/A | -36 | Pass |
| ſ | NVNT | ANT1 | 802.11n(HT40) | 5795.00 | 1000.00~5725.00  | 5717.28  | -47.09 | N/A | -30 | Pass |
|   | NVNT | ANT1 | 802.11n(HT40) | 5795.00 | 5725.00~5875.00  | 5786.98  | 3.14   | 1   | 1   | 1    |
| Ī | NVNT | ANT1 | 802.11n(HT40) | 5795.00 | 5875.00~26000.00 | 25058.82 | -39.63 | N/A | -30 | Pass |

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23010613

Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

![](_page_61_Figure_0.jpeg)

![](_page_62_Figure_0.jpeg)

![](_page_63_Figure_0.jpeg)

![](_page_64_Figure_0.jpeg)

Report No.: DACE240718006RL005

### 5. Receiver spurious emissions

DΔC

| Condition | Antenna | Mode          | Frequency<br>(MHz) | Range            | Spur<br>Freq(MHz) | Spur Freq<br>Peak(dBm) | Spur Level<br>RMS(dBm) | Limit(dBm) | Result |
|-----------|---------|---------------|--------------------|------------------|-------------------|------------------------|------------------------|------------|--------|
| NVNT      | ANT1    | 802.11a       | 5745.00            | 30.00~1000.00    | 159.98            | -70.91                 | N/A                    | -57        | Pass   |
| NVNT      | ANT1    | 802.11a       | 5745.00            | 1000.00~26000.00 | 7726.67           | -60.89                 | N/A                    | -47        | Pass   |
| NVNT      | ANT1    | 802.11a       | 5785.00            | 30.00~1000.00    | 160.01            | -70.87                 | N/A                    | -57        | Pass   |
| NVNT      | ANT1    | 802.11a       | 5785.00            | 1000.00~26000.00 | 7726.67           | -61.20                 | N/A                    | -47        | Pass   |
| NVNT      | ANT1    | 802.11a       | 5825.00            | 30.00~1000.00    | 39.99             | -71.23                 | N/A                    | -57        | Pass   |
| NVNT      | ANT1    | 802.11a       | 5825.00            | 1000.00~26000.00 | 7726.67           | -60.72                 | N/A                    | -47        | Pass   |
| NVNT      | ANT1    | 802.11n(HT20) | 5745.00            | 30.00~1000.00    | 160.01            | -71.01                 | N/A                    | -57        | Pass   |
| NVNT      | ANT1    | 802.11n(HT20) | 5745.00            | 1000.00~26000.00 | 7726.67           | -60.83                 | N/A                    | -47        | Pass   |
| NVNT      | ANT1    | 802.11n(HT20) | 5785.00            | 30.00~1000.00    | 160.01            | -70.46                 | N/A                    | -57        | Pass   |
| NVNT      | ANT1    | 802.11n(HT20) | 5785.00            | 1000.00~26000.00 | 7726.67           | -60.45                 | N/A                    | -47        | Pass   |
| NVNT      | ANT1    | 802.11n(HT20) | 5825.00            | 30.00~1000.00    | 159.98            | -70.49                 | N/A                    | -57        | Pass   |
| NVNT      | ANT1    | 802.11n(HT20) | 5825.00            | 1000.00~26000.00 | 7726.67           | -60.95                 | N/A                    | -47        | Pass   |
| NVNT      | ANT1    | 802.11n(HT40) | 5755.00            | 30.00~1000.00    | 159.98            | -70.97                 | N/A                    | -57        | Pass   |
| NVNT      | ANT1    | 802.11n(HT40) | 5755.00            | 1000.00~26000.00 | 1726.67           | -60.39                 | N/A                    | -47        | Pass   |
| NVNT      | ANT1    | 802.11n(HT40) | 5795.00            | 30.00~1000.00    | 160.01            | -70.16                 | N/A                    | -57        | Pass   |
| NVNT      | ANT1    | 802.11n(HT40) | 5795.00            | 1000.00~26000.00 | 7726.67           | -60.84                 | N/A                    | -47        | Pass   |

![](_page_65_Figure_4.jpeg)

![](_page_66_Figure_0.jpeg)

![](_page_67_Figure_0.jpeg)

![](_page_68_Figure_0.jpeg)

| DIC                     |
|-------------------------|
| 28000<br>Frequency(MHz) |
| DAC                     |
|                         |
|                         |
|                         |

DAG

DAG

DE

#### 6. Receiver Blocking

V1.0

DΔG

1

DAG

.

DAG

DAG

DAG

)DE

| Condition | Antenna | Modulation | Frequency<br>(MHz) | Wanted<br>Power<br>(dBm) | Blocking<br>Frequency (MHz) | Blocking<br>Power (dBm) | PER(%) | Limit(%) | Result |
|-----------|---------|------------|--------------------|--------------------------|-----------------------------|-------------------------|--------|----------|--------|
| NVNT      | ANT1    | 802.11a    | 5745               | -68                      | 5545                        | -34                     | 2.05   | ≤10      | Pass   |
| NVNT      | ANT1    | 802.11a    | 5745               | -68                      | 5945                        | -34                     | 2.64   | ≤10      | Pass   |
| NVNT      | ANT1    | 802.11a    | 5745               | -68                      | 5345                        | -34                     | 2.88   | ≤10      | Pass   |
| NVNT      | ANT1    | 802.11a    | 5745               | -68                      | 6145                        | -34                     | 2.63   | ≤10      | Pass   |
| NVNT      | ANT1    | 802.11a    | 5745               | -68                      | 4745                        | -34                     | 1.26   | ≤10      | Pass   |
| NVNT      | ANT1    | 802.11a    | 5745               | -68                      | 6745                        | -34                     | 1.92   | ≤10      | Pass   |
| NVNT      | ANT1    | 802.11a    | 5825               | -68                      | 5625                        | -34                     | 1.66   | ≤10      | Pass   |
| NVNT      | ANT1    | 802.11a    | 5825               | -68                      | 6025                        | -34                     | 1.86   | ≤10      | Pass   |
| NVNT      | ANT1    | 802.11a    | 5825               | -68                      | 5425                        | -34                     | 2.01   | ≤10      | Pass   |
| NVNT      | ANT1    | 802.11a    | 5825               | -68                      | 6225                        | -34                     | 2.05   | ≤10      | Pass   |
| NVNT      | ANT1    | 802.11a    | 5825               | -68                      | 4825                        | -34                     | 2.64   | ≤10      | Pass   |
| NVNT      | ANT1    | 802.11a    | 5825               | -68                      | 6825                        | -34                     | 2.88   | ≤10      | Pass   |
|           |         |            |                    |                          |                             |                         |        |          |        |

C

)De

DAG

)AC

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.comPage 71 of 71

)AC